納米技術(shù)提高了化妝品產(chǎn)品的質(zhì)量,它們通過(guò)插入納米乳液、納米顏料、納米脂質(zhì)體、納米粒子和納米纖維等納米材料而得到增強(qiáng)。個(gè)人護(hù)理化妝品產(chǎn)品,如洗發(fā)水、面膜、保濕霜、古銅色、防曬霜、抗衰老霜是含有納米結(jié)構(gòu)材料的化妝品的一些例子。
| 產(chǎn)品名稱 | 世聯(lián)博研inovenso納米纖維紡絲機(jī)應(yīng)用之一化妝品用納米纖維:納米技術(shù)提高了化妝品的質(zhì)量 |
| 品牌 | inovenso |
| 產(chǎn)品貨號(hào) | 世聯(lián)博研inovenso納米纖維紡絲機(jī)應(yīng)用之一化妝品用納米纖維:納米技術(shù)提高了化妝品的質(zhì)量 |
| 產(chǎn)品價(jià)格 | 現(xiàn)貨詢價(jià) |
| 聯(lián)系人 | 董先生 |
| 聯(lián)系電話 | 13215512868 |
產(chǎn)品說(shuō)明高效納米纖維化妝品納米技術(shù)提高了化妝品產(chǎn)品的質(zhì)量,它們通過(guò)插入納米乳液、納米顏料、納米脂質(zhì)體、納米粒子和納米纖維等納米材料而得到增強(qiáng)。個(gè)人護(hù)理化妝品產(chǎn)品,如洗發(fā)水、面膜、保濕霜、古銅色、防曬霜、抗衰老霜是含有納米結(jié)構(gòu)材料的化妝品的一些例子。
為什么在化妝品中使用納米纖維?
納米纖維化妝品的例子
透明質(zhì)酸
刺激膠原蛋白的產(chǎn)生
維生素C
具有抗氧化te性
水楊酸
減少原發(fā)性病變的數(shù)量
蘆薈
提供抗炎作用
我們提供什么?Inovenso 不僅提供適用于生產(chǎn)基于納米纖維的化妝品產(chǎn)品的工業(yè)機(jī)械,而且我們還提供啟動(dòng)即插即用生產(chǎn)所需的完整 A 到 Z 包裝。 由于我們的研發(fā)團(tuán)隊(duì)擁有廣泛的知識(shí)和專業(yè)知識(shí),我們能夠?yàn)榭蛻艉秃献骰锇樘峁┻m合他們需求的研發(fā)服務(wù)。服務(wù)shou先確定開(kāi)發(fā)所需產(chǎn)品所需的正確材料和成分,以實(shí)現(xiàn)其所需te性(抗衰老、美白、保濕……)。此外,在我們的一攬子計(jì)劃范圍內(nèi),我們還提供技術(shù)轉(zhuǎn)讓服務(wù),將我們的科技研究成果以及與知識(shí)產(chǎn)權(quán)管理相關(guān)的相關(guān)技能和程序傳遞到市場(chǎng)。 Inovenso 的研發(fā)團(tuán)隊(duì)致力于推進(jìn)靜電紡絲領(lǐng)域的研究和開(kāi)發(fā)用于納米纖維應(yīng)用的新型產(chǎn)品。對(duì)于化妝品行業(yè),我們的工程師和科學(xué)家團(tuán)隊(duì)在設(shè)計(jì)納米纖維支架方面擁有豐富的經(jīng)驗(yàn),用于治療和補(bǔ)充皮膚中嵌入的有益營(yíng)養(yǎng)物質(zhì)。 我們的團(tuán)隊(duì)與對(duì)從概念驗(yàn)證到產(chǎn)品開(kāi)發(fā)等項(xiàng)目感興趣的客戶積ji參與研發(fā)服務(wù)。具體來(lái)說(shuō),靜電紡絲納米纖維和嵌入式納米粒子可用于化妝品、生物醫(yī)學(xué)和過(guò)濾等各個(gè)行業(yè)。對(duì)于化妝品應(yīng)用,我們已深入研究設(shè)計(jì)含有營(yíng)養(yǎng)成分的眼貼和面膜,以凈化皮膚,并在某些情況下治療痤瘡。 除了研發(fā)服務(wù),如果產(chǎn)品已經(jīng)由我們或您du立制造,我們可以提供合同制造服務(wù),我們將您的納米纖維產(chǎn)品批量生產(chǎn)到商業(yè)化規(guī)模。我們的設(shè)施由工業(yè)級(jí)靜電紡絲機(jī)組成,可滿足客戶每月對(duì)單位的需求。
參考文獻(xiàn):
1. Turan C U, Guvenilir Y.
Electrospun Poly (ω-pentadecalactone-co-ε-caprolactone)/Gelatin/Chitosan
Ternary Nanofibers with Antibacterial Activity for Treatment of Skin
Infections[J]. European Journal of Pharmaceutical Sciences, 2022: 106113.
2. Ionescu O M, Iacob A T, Mignon
A, et al. Design, preparation and in vitro characterization of biomimetic and
bioactive chitosan/polyethylene oxide based nanofibers as wound dressings[J].
International Journal of Biological Macromolecules, 2021, 193: 996-1008.
3. Acik G, Acik B, Agel E.
Layer-by-Layer Assembled, Amphiphilic and Antibacterial Hybrid Electrospun Mat
Made from Polypropylene and Chitosan Fibers[J]. Journal of Polymers and the
Environment, 2021: 1-10.
4. Vergara-Figueroa J,
Alejandro-Martin S, Cerda-Leal F, et al. Dual electrospinning of a
nanocomposites biofilm: Potential use as an antimicrobial barrier[J]. Materials
Today Communications, 2020, 25: 101671.
5. Madub K, Goonoo N, Gimié F, et
al. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and
in vivo angiogenesis for skin tissue engineering[J]. Carbohydrate Polymers,
2021, 251: 117025.
6. Gao Y, Bach Truong Y, Zhu Y, et
al. Electrospun antibacterial nanofibers: Production, activity, and in vivo
applications[J]. Journal of Applied Polymer Science, 2014, 131(18).
7. Balaconis M K, Luo Y, Clark H
A. Glucose-sensitive nanofiber scaffolds with an improved sensing design for
physiological conditions[J]. Analyst, 2015, 140(3): 716-723.
8. DUZYER S, HOCKENBERGER A, Agah
U, et al. Effect of ethylene oxide, autoclave and ultra violet sterilizations
on surface topography of PET electrospun fibers[J]. Uluda? University Journal of The Faculty of Engineering, 2016, 21(2):
201-218.
9. Cerkez I, Sezer A, Bhullar S K.
Fabrication and characterization of electrospun poly (e-caprolactone) fibrous
membrane with antibacterial functionality[J]. Royal Society open science, 2017,
4(2): 160911.
10. Aksoy O E, Ates B, Cerkez I.
Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and
chlorination[J]. Journal of Materials Science, 2017, 52(17): 10013-10022.
11. POLAT N H, ?zlem K A P,
Farzaneh A. Anticorrosion coating for magnesium alloys: electrospun
superhydrophobic polystyrene/SiO2 composite fibers[J]. Turkish
Journal of Chemistry, 2018, 42(3): 672-683.
12. Aktürk A, Taygun M E, Güler F
K, et al. Fabrication of antibacterial polyvinylalcohol nanocomposite mats with
soluble starch coated silver nanoparticles[J]. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 2019, 562: 255-262.
13. Arik N, Inan A, Ibis F, et al.
Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma:
alignment, antibacterial activity, and biocompatibility[J]. Polymer Bulletin,
2019, 76(2): 797-812.
14. Abdali Z, Logsetty S, Liu S.
Bacteria-responsive single and core–shell nanofibrous membranes based on
polycaprolactone/poly (ethylene succinate) for on-demand release of
biocides[J]. ACS omega, 2019, 4(2): 4063-4070.
15. Ferna?ndez J, Ruiz-Ruiz M,
Sarasua J R. Electrospun fibers of polyester, with both nano-and micron
diameters, loaded with antioxidant for application as wound dressing or tissue
engineered scaffolds[J]. ACS Applied Polymer Materials, 2019, 1(5): 1096-1106.
16. Gurler E B, Ergul N M, Ozbek B,
et al. Encapsulated melatonin in polycaprolactone (PCL) microparticles as a
promising graft material[J]. Materials Science and Engineering: C, 2019, 100:
798-808.
17. Sanchez-Rexach E, Iturri J,
Fernandez J, et al. Novel biodegradable and non-fouling systems for
controlled-release based on poly (ε-caprolactone)/Quercetin blends and
biomimetic bacterial S-layer coatings[J]. RSC advances, 2019, 9(42):
24154-24163.
| |
世聯(lián)博研(北京)科技有限公司 京ICP備19044772號(hào)-1
單位地址:北京市昌平區(qū)建材西路87號(hào)2號(hào)樓9層2單元906 | |