<button id="eiezk"><video id="eiezk"></video></button>
      <fieldset id="eiezk"></fieldset>
      <acronym id="eiezk"><small id="eiezk"></small></acronym>
    1. <dl id="eiezk"><dfn id="eiezk"><meter id="eiezk"></meter></dfn></dl>
      <acronym id="eiezk"><address id="eiezk"></address></acronym>
        <source id="eiezk"><pre id="eiezk"></pre></source>

        產(chǎn)品名稱3D組織器官芯片模型,SynBBB血腦屏障模型,Idealized Co-Culture Network Chips,Idealized Co-Culture Network Chips (IMN2 TEER),Idealized Co-Culture Network Chips (IMN2 Linear)
        品牌synvivo
        產(chǎn)品貨號3D組織器官芯片模型,SynBBB血腦屏障模型,Idealized Co-Culture Network Chips,Idealized Co-Culture Network Chips (IMN2 TEER),Idealized Co-Culture Network Chips (IMN2 Linear)
        產(chǎn)品價格現(xiàn)貨詢價
        聯(lián)系人李先生
        聯(lián)系電話18618101725
        產(chǎn)品說明

        3D組織器官芯片模型

        SynBBB血腦屏障模型,SynTumor 3D腫瘤模型,SynTox 3D毒理模型,SynRAM 3D炎癥模型,synvivo血管模型芯片,SynALI氣液界面肺模型

        二、SynBBB血腦屏障模型

        SynBBB血腦屏障模型通過復(fù)制腦組織細胞的組織學(xué)切片來重建體內(nèi)微環(huán)境。該模型能夠通過與跨血腦屏障(BBB)的內(nèi)皮細胞進行通訊來實現(xiàn)此目的。結(jié)果,在SynBBB模型中,使用生理流體流很容易實現(xiàn)剪切誘導(dǎo)的內(nèi)皮細胞緊密連接。這是其他模型(例如Transwell®模型)wu法實現(xiàn)的。緊密連接變化的形成可以使用SynVivo細胞阻抗分析儀通過生化或電氣分析(評估電阻變化)進行測量。在SynBBB分析中,很容易看到大腦組織細胞與內(nèi)皮細胞之間的相互作用。 Transwell®模型不允許實時顯示這些細胞之間的相互作用,這對于理解BBB微環(huán)境至關(guān)重要。

        用于開發(fā)BBB模型的設(shè)備的示意圖。 頂腔(外通道)用于培養(yǎng)血管(內(nèi)皮細胞),而基底外側(cè)腔(中央腔)用于培養(yǎng)腦組織細胞(星形細胞,周細胞或神經(jīng)元)。 多孔結(jié)構(gòu)使血管細胞與組織細胞之間可以進行通訊。 外通道寬度(OC),行進寬度(T),狹縫間距(SS),狹縫寬度(WS)。
        重點包括:
        準確的體內(nèi)血液動力學(xué)切應(yīng)力
        實時可視化和定量細胞和屏障功能
        大大減少了成本和時間
        穩(wěn)健易用的協(xié)議

        產(chǎn)品購買選項
        芯片:根據(jù)您的特定研究應(yīng)用,您可以從基本的IMN2(徑向或線性)或IMN2徑向“ TEER兼容”芯片配置中進行選擇。

        試劑盒:運行SynBBB分析所需的基本組件都可以以試劑盒形式購買。提供兩種套件格式,您可以在IMN2徑向,IMN2線性或IMN2徑向TEER芯片之間進行選擇。

        入門套件:shou次購買時請選擇

        10個SynBBB芯片(選擇IMN2徑向,IMN2線性或IMN2徑向TEER共培養(yǎng)芯片)
        配件,包括油管,夾具,針頭和注射器
        氣動灌注裝置(灌注管路以除去空氣時需要)
        電池阻抗分析儀*(SynBBB TEER測量必需)
        *僅包含在IMN2-TEER入門套件中
        檢測試劑盒:如果您以前購買過氣動灌注設(shè)備,請選擇此試劑盒格式

        10個SynBBB芯片(選擇IMN2徑向,IMN2線性或IMN2徑向TEER共培養(yǎng)芯片)
        配件,包括油管,夾具,針頭和注射器

        SynVivo平臺用于在芯片上創(chuàng)建個新生兒血腦屏障
        天普大學(xué)的研究人員在芯片上使用SynBBB大腦對新生兒血腦屏障(BBB)的屬性和功能進行建模。 SynBBB模型緊密模擬了體內(nèi)的微環(huán)境,包括微流控芯片上的三維形態(tài),細胞相互作用和流動特性。這項工作標(biāo)志著個動態(tài)體外新生兒BBB模型,該模型提供適合于BBB功能研究和新型療法篩選的實時可視化和分析。

        新型動態(tài)新生兒血腦屏障芯片。
        作者:S。Deosarkar,B。Prabhakarpandian,B。Wang,J.B。Sheffield,B。Krynska和M. Kiani。
        一號,2015,DOI:10.1371 / journal.pone.0142725

        SynBBB模型包括并排放置的組織隔室和血管通道,并由工程多孔屏障隔開。因此,研究人員能夠在體內(nèi)觀察到的生理條件下共同培養(yǎng)新生大鼠腦內(nèi)皮細胞和大鼠星形膠質(zhì)細胞。內(nèi)皮細胞形成完整的內(nèi)腔并表現(xiàn)出緊密的連接形成,在與星形膠質(zhì)細胞共培養(yǎng)下增加。發(fā)現(xiàn)芯片上的血腦屏障中的小分子滲透性與體內(nèi)觀察非常吻合。與Transwell模型相比,SynBBB的屏障功能顯著改善,并且非常接近體內(nèi)BBB的滲透性。


        BBB-permeability
        SynBBB and Transwell BBB were constructed with neonatal RBEC in the presence of ACM. Permeability of 40 kDa dextran in SynBBB is significantly lower than transwell but not significantly different from that of in vivo BBB in neonatal rats.
        astrocyte-communication
        Astrocyte and rat brain endothelial cell interaction at the porous interface between vascular channel and the tissue compartment

        SynVivo Platform Used to Develop Blood Tumor Barrier On-A-Chip

        Permeability Across a Novel Microfluidic Blood-Tumor-Barrier Model 
        Authors: Tori B. Terrell-Hall, Amanda G. Ammer , Jessica I. G. Griffith and Paul R. Lockman
        Fluids and Barriers of the CNS (2017) 14:3

        In this study, Dr. Lockman’s team adapted the SynVivo BBB model to develop and characterize a BTB model. Results from the study demonstrate that the in vitro BTB model mimics the in vivo BTB with regard to permeability and efflux properties. In addition, inhibitor-based modulation of the permeability was readily quantified and compared very well with in vivo observations. According to Dr. Lockman “While some in vitro models have a flow component, this assay is the first-ever blood-tumor barrier developed using a commercially available microfluidic model with shear stress similar to that observed in vivo in addition to real-time visualization and quantitation.” This Blood Tumor Barrier model lays the foundation for use in screening assays for drug discovery and understanding of Central Nervous System diseases.

        diffusion charts
        diffusion charts
        Representative brightfield image of Rhodamine 123 dye accumulation in the central compartment after 90 min of perfusion in the BBB model without an inhibitor (a) and with an inhibitor (b). Rate of fluorescent dye accumulation of Rho123 into central compartment after 90 min of dye perfusion in BBB, and BTB chips (c). Rate of fluorescent dye accumulation in BBB (d) and BTB (e) chips perfused with Rho123 ± P-gp inhibitors (Cyclosporine A or Verapamil). Statistical significance was determined using one-way ANOVA followed by Tukey’s multiple comparison tests, and student’s t test; *p < 0.05 significance between tracer and unrestricted diffusion kin, n = 3–4; +p < 0.05 significance between BBB/BTB models and the addition of inhibitor, n = 3–6. All data represent mean ± SEM. White rectangle scale bars 500 μm

        SynBBB Blood Tumor Barrier On-A-Chip Advances Understanding of Therapeutic Transfer Across the Blood-Brain Barrier

        Trastuzumab Distribution in an In-Vivo and In-Vitro Model of Brain Metastases of Breast Cancer
        Authors:
         Tori B. Terrell-Hall, Mohamed Ismail Nounou, Fatema El-Amrawy, Jessica I.G. Griffith and Paul R. Lockman
        Oncotarget. 2017; 8:83734-83744

        Researcher Paul Lockman and colleagues at West Virginia University, report on one of the first studies to monitor and quantify Trastuzumab (Herceptin®) movement across the blood-brain barrier using the SynVivo Blood-Brain Barrier (BBB) on-a-chip. Trastuzumab is a monoclonal antibody that is a widely used therapeutic for the treatment of HER2+ breast cancer. In the study published in Oncotarget titled “Trastuzumab distribution in an in-vivo and in-vitro model of brain metastases of breast cancer”, SynVivo’s BBB model was adapted to develop a blood tumor barrier (BTB) model. The model was comprised of HER2+ breast cancer cells followed by real-time monitoring of the tissue distribution of the antibody trastuzumab. Data showed that the permeability of trastuzumab in-vivo increased from the BBB to the BTB similar to that observed in the SynVivo model.

        According to Dr. Lockman, “Development of an in vitro model with the ability to predict in vivo responses across the BBB is critical to progress our understanding and therapeutic strategies for brain disorders”. SynVivo’s in vivo validated microfluidic 3D tissue models provide a valuable resource for augmenting translational research for drug discovery and delivery.

        diffusion charts
        Mechanism of trastuzumab movement. Linear central compartment accumulation of t-Rho123 in in-vitro BBB and BTB microfluidic chip models. Representative image of model with TRITC labeled t-Rho123 flowing over HUVEC cells in the outer compartment and either astrocytes or JIMT-1 cancer cells in the central compartment (A). Rate of t-Rho123 movement in each model plotted against the unrestricted diffusion kin; ** p<0.0033 significance between BBB model and unrestricted diffusion kin, n=3; *** p<0.0005 significance between BTB model and unrestricted diffusion kin, n=3. All data represent mean ± S.E.M. Each model is significantly different than 0 (p < 0.05) (B). Representative graphs of the rate of accumulation of t-Rho123 in the BBB (C) and BTB

        SynBBB Blood-Brain Barrier On-A-Chip Assay Used For Screening of Novel Therapeutics in Real-Time

        Protein Kinase C-Delta Inhibition Protects Blood-Brain Barrier from Sepsis-Induced Vascular Damage
        Authors: Yuan Tang, Fariborz Soroush, Shuang Sun, Elisabetta Liverani, Jordan C. Langston, Qingliang Yang, Laurie E. Kilpatrick, and Mohammad F. Kiani. J
        Neuroinflammation. 15: 309 (2018).

        This publication reports on the use of the blood-brain barrier model to elucidate the regulation and relative contribution of Protein Kinase C-delta in the control of individual steps in neuroinflammation during sepsis. The role of PKC-delta-TAT peptide inhibitor as a potential therapeutic for the prevention or reduction of cerebrovascular injury in sepsis-induced vascular damage was also studied.

        Vascular integrity was assessed using the SynBBB Co-Culture model with primary human brain microvascular endothelial cells and Astrocytes. Endothelial cell permeability, TEER, and neutrophil transmigration were directly evaluated. SynBBB also allowed for real-time monitoring of neutrophil-endothelial interaction under physiologically relevant flow conditions.

        SYNBBB_permeability

        PKCδ activation is a key signaling event that alters the structural and functional integrity of BBB leading to vascular damage and inflammation-induced tissue damage. PKCδ-TAT peptide inhibitor has therapeutic potential for the prevention or reduction of cerebrovascular injury in sepsis-induced vascular damage.

        Human Blood-Brain Barrier on a Chip Developed with hCMEC/D3 Brain Endothelial Cell Line and Primary Human Astrocytes

        A Microfluidic Model of Human Brain (uHuB) for Assessment of Blood-Brain Barrier
        Authors: Tyler D. Brown, Maksymillian Nowak, Alexandra V. Bayles, Balabhaskar Prabhakarpandian, Pankaj Karande, Joerg Lahann, Matthew Helgeson, Samir Mitragotri.
        Bioengineering and Translational Medicine. 15: 309 (2019; 4:e10126)

        hCMEC/D3 cell line forms a complete lumen underflow and displays the appropriate tight junction markers.

        (a–f) Confocal images of hCMEC/D3 monolayers in the μHuB after conditioning to flow stained with ActinRed? 555 ReadyProbes? (actin, red) and Hoechst 33342 (nucleus, blue). (a) Onwardlooking view of μHuB device consisting of two vascular (apical) compartments lined with hCMEC/D3 monolayers. (b) Crosssectional view of hCMEC/D3 monolayers in μHuB forming a complete inner lumen approximately 200?μm (width) by 100?μm (height). (c) Onwardlooking view of one quadrant of the μHuB model as outlined in yellow in (a). (d) Lower half of (c), lined with a complete hCMEC/D3 monolayer. (e) Crosssectional view of inner lumen. (f) Same crosssection as (e) at 90° viewing angle
        uhub model

        Co-Culture of hCMEC/D3 and Primary Astrocytes in the Human SynBBB Blood-Brain Barrier On-A-Chip

        hCMEC/D3 monolayers (green) were cultured in the vascular (apical) compartments with primary human astrocytes (red) in the tissue (basolateral) compartment (nuclei, blue). (a) Onward‐looking view of complete, three‐dimensional reconstruction of the co culture SynBBB model. (b) Zoomed‐in yellow region of (a) with arrows pointing to regions where astrocyte end‐feet are protruding to hCMEC/D3 monolayer. (scale bar for b?=?20?μm






        <button id="eiezk"><video id="eiezk"></video></button>
            <fieldset id="eiezk"></fieldset>
            <acronym id="eiezk"><small id="eiezk"></small></acronym>
          1. <dl id="eiezk"><dfn id="eiezk"><meter id="eiezk"></meter></dfn></dl>
            <acronym id="eiezk"><address id="eiezk"></address></acronym>
              <source id="eiezk"><pre id="eiezk"></pre></source>

              新视觉伦理,欧美视频中文字幕,www.色呦呦 | 国产精品 色欲A片在线观看,小婷的放荡生活公交车上,三级91爱爱电影 | 国产极品大陆一区二区伦理片,久久色在线播放,三级片男人的天堂 | 精品人妻无码视频,樱花草国产18久久久久,亚洲AV无码成人精品国产澳门 | 91精品国产综合久久久久久久,特级精品毛片免费观看,99在线精品视频在线观看 | 久久视频这里只有精品,69成人天堂无码免费,岛国Av在线成人 | 骚逼视频网站,揉我胸啊嗯上课呢口述,免费操逼逼视频 | 日韩性高潮,深夜福利视频网址,精品无码AV爽爽爽爽 | 亚洲色色色,国产一级免费网站,偷拍视频青青草 | 精品国自产拍在线观看,国产插视频,一级特黄 |