<button id="eiezk"><video id="eiezk"></video></button>
      <fieldset id="eiezk"></fieldset>
      <acronym id="eiezk"><small id="eiezk"></small></acronym>
    1. <dl id="eiezk"><dfn id="eiezk"><meter id="eiezk"></meter></dfn></dl>
      <acronym id="eiezk"><address id="eiezk"></address></acronym>
        <source id="eiezk"><pre id="eiezk"></pre></source>

        產(chǎn)品名稱科研型納米纖維靜電紡絲系統(tǒng)—數(shù)百篇文獻案例
        品牌土耳其inovenso
        產(chǎn)品貨號科研型納米纖維靜電紡絲系統(tǒng)—數(shù)百篇文獻案例
        產(chǎn)品價格現(xiàn)貨詢價
        聯(lián)系人李先生
        聯(lián)系電話18618101725
        產(chǎn)品說明



        NE300多噴嘴靜電紡絲機

        NE300-靜電紡紗機-1-1100x550

        簡要描述;簡介

        NE300電紡絲機是一種緊湊,靈活的實驗室規(guī)模的電紡絲系統(tǒng)。與NS 24非常相似,但發(fā)射器更少(8個噴嘴),也具有單噴嘴生產(chǎn)能力。該模型具有均質(zhì)系統(tǒng),可以均勻涂覆納米纖維膜。NE 300帶有一個電jue緣的機柜,該機柜帶有對化學溶液呈惰性的高密度PE部件,可用于處理許多聚合物??梢詫⒃S多可選功能添加到系統(tǒng)中,例如用于核-殼,中空和雙組分納米纖維的同軸系統(tǒng)。

        du特的屬性

        • 通過9英寸觸摸屏面板進行可靠,精度的過程調(diào)整
        • 自下而上的紡紗
        • 多達8個噴嘴用于高通量靜電紡絲
        • 314mm * 220mm涂層面積
        • 電jue緣柜,具有對化學溶液呈惰性的高密度PE零件
        • 自動控制電壓,流量和收集器運動(z軸,x軸和旋轉(zhuǎn))
        • 額外的安quan選項,例如安quan門和警告燈,避免高壓

        可選配件

        不同直徑的針

        下列直徑的電紡針:(23G,21G,19G,17G,15G)X10件。

        雙組分系統(tǒng)

        特殊設計的同軸噴嘴(內(nèi)徑:0.8毫米,外徑:1.6毫米)和一個額外的注射泵,可得到核-殼,中空和雙組分納米纖維。

        氣罩噴嘴

        氣體防護罩是解決溶劑飽和的N2氣體堵塞針頭頂部聚合物的一種方法。該選項可以提高許多聚合物溶液的生產(chǎn)率。

        旋轉(zhuǎn)軸收集器

        直徑為3-4-5和6毫米的旋轉(zhuǎn)軸收集器,用于生產(chǎn)管狀納米纖維膜。

        溫控箱

        將紡絲區(qū)加熱到40°C。

        除濕機連體箱

        環(huán)境濕度調(diào)節(jié)在25%和室內(nèi)條件之間。

        真空吸盤收集器

        將固體基材(金屬,玻璃,薄板,薄片)真空固定在固定板收集器上。

        延長保修

        標準設備具有1年保修。此外,還可以提供延長保修期的機器保修。


        二、NE200單噴嘴靜電紡絲機


        是大學和小型研發(fā)項目的基本電紡絲裝置。 其目標是為初學者研究人員輕松而輕易地生產(chǎn)納米纖維。 單噴嘴電紡絲裝置,具有高速旋轉(zhuǎn)軸和板收集區(qū)。 能夠處理類型的可紡聚合物。



        NE200-靜電紡紗機-2-1100x550

        簡要說明

        NE200是功能與預算友好型機型的終ji組合。想要在多功能系統(tǒng)中進行研究的科學家的里想選擇。該機器配有一個扁平收集器和一個旋轉(zhuǎn)鼓式收集器,以獲取排列整齊的納米纖維,但也可以選擇容納其他類型的收集器,例如具有不同尺寸的旋轉(zhuǎn)棒式收集器,以獲取稱為管狀納米纖維膜的納米纖維的管狀結(jié)構(gòu)。可以用作人造血管。

        du特的屬性

        • 通過9英寸觸摸屏面板進行可靠,精度的過程調(diào)整
        • 高通量生產(chǎn)
        • 單噴嘴電噴涂和電噴涂
        • 可變的扁平集熱器類型
        • 30-230mm噴嘴到收集器的自動距離調(diào)節(jié)
        • 濕度和溫度控制機箱選件
        • 額外的安quan選項,例如安quan門和警告燈,避免高壓
        • 根據(jù)安quan法規(guī)和CE認證生產(chǎn)

        可選配件

        不同直徑的針

        下列直徑的電紡針:(23G,21G,19G,17G,15G)X10件。

        雙組分系統(tǒng)

        特殊設計的同軸噴嘴(內(nèi)徑:0.8毫米,外徑:1.6毫米)和一個額外的注射泵,可得到核-殼,中空和雙組分納米纖維。

        氣罩噴嘴

        氣體防護罩是解決溶劑飽和的N2氣體堵塞針頭頂部聚合物的一種方法。該選項可以提高許多聚合物溶液的生產(chǎn)率。

        旋轉(zhuǎn)軸收集器

        直徑為3-4-5和6毫米的旋轉(zhuǎn)軸收集器,用于生產(chǎn)管狀納米纖維膜。

        溫控箱

        將紡絲區(qū)加熱到40°C。

        除濕機連體箱

        環(huán)境濕度調(diào)節(jié)在25%和室內(nèi)條件之間。

        真空吸盤收集器

        將固體基材(金屬,玻璃,薄板,薄片)真空固定在固定板收集器上。

        延長保修


        三、歐美熱銷inovenso NE100單噴嘴靜電紡絲機


        NE100-靜電紡紗機-1-1100x550

        NE100靜電紡絲單元  是介于基本靜電紡絲系統(tǒng)和靜電紡絲系統(tǒng)之間的型號,工藝參數(shù)均可從其可編程的易于使用的觸摸屏面板進行編輯。它還具有經(jīng)過特殊設計的隔離式底盤和排氣系統(tǒng),可用于蒸發(fā)溶劑。由于門安quan系統(tǒng)和隔離的底盤,科學家可以安quan地進行實驗。

        簡要說明

        Ne100是一種易于使用的單噴嘴靜電紡絲裝置,專為小規(guī)模生產(chǎn)納米纖維而設計。受保護的機艙避免了高壓或溶劑蒸汽可能引起的任何危險。該模型包含在Inovenso Scale Up Program中,允許用戶將其設備升級到更的模型。

        du特的屬性

        • 通過9英寸觸摸屏面板進行可靠,精度的過程調(diào)整
        • 特殊單噴嘴實現(xiàn)高產(chǎn)量生產(chǎn)
        • 扁平收集器,用于納米纖維沉積

        可選配件

        不同直徑的針

        下列直徑的電紡針:(23G,21G,19G,17G,15G)X10件。

        雙組分系統(tǒng)

        特殊設計的同軸噴嘴(內(nèi)徑:0.8毫米,外徑:1.6毫米)和一個額外的注射泵,可得到核-殼,中空和雙組分納米纖維。

        氣罩噴嘴

        氣體防護罩是解決溶劑飽和的N2氣體堵塞針頭頂部聚合物的一種方法。該選項可以提高許多聚合物溶液的生產(chǎn)率。

        旋轉(zhuǎn)軸收集器

        直徑為3-4-5和6毫米的旋轉(zhuǎn)軸收集器,用于生產(chǎn)管狀納米纖維膜。

        溫控箱

        將紡絲區(qū)加熱到40°C。

        除濕機連體箱

        環(huán)境濕度調(diào)節(jié)在25%和室內(nèi)條件之間。

        真空吸盤收集器

        將固體基材(金屬,玻璃,薄板,薄片)真空固定在固定板收集器上。

        延長保修


        四、Nanospinner 24多噴嘴靜電紡絲機





        NS 24是Inovenso通用,的實驗室規(guī)模的系統(tǒng),它也是我們的型號,在的大學和公司中安裝了50多個裝置。該靜電紡絲單元可將納米纖維收集在各種收集器上:平板收集器,轉(zhuǎn)速為2000 rpm的旋轉(zhuǎn)鼓式收集器,用于獲得排列良好的納米纖維。它還可以任選地容納具有不同尺寸的旋轉(zhuǎn)棒收集器,以獲得被稱為管狀納米纖維膜的納米纖維的管狀結(jié)構(gòu),其可以用作人造血管。該型號有12個噴嘴,但也可以與單個噴嘴一起用于小型實驗室生產(chǎn)。

        du特的屬性

        通過9英寸觸摸屏面板進行可靠,精度的過程調(diào)整

        高通量生產(chǎn)

        多達12個靜電紡絲噴嘴供料

        376,8mm * 280mm納米纖維涂層面積

        高達2000 RPM的高速旋轉(zhuǎn)鼓

        定向或排列的納米纖維的生產(chǎn)

        可調(diào)水平運動以增加膜的均勻性

        自動可調(diào)旋轉(zhuǎn)距離

        額外的安quan選項,例如安quan門和警告燈,避免高壓

        根據(jù)安quan法規(guī)生產(chǎn)并獲得CE認證

        不同直徑的針

        下列直徑的電紡針:(23G,21G,19G,17G,15G)X10件。

         

        雙組分系統(tǒng)

        特殊設計的同軸噴嘴(內(nèi)徑:0.8毫米,外徑:1.6毫米)和一個額外的注射泵,可得到核-殼,中空和雙組分納米纖維。

        氣罩噴嘴

        氣體防護罩是解決溶劑飽和的N2氣體堵塞針頭頂部聚合物的一種方法。該選項可以提高許多聚合物溶液的生產(chǎn)率。

        旋轉(zhuǎn)軸收集器

        直徑為3-4-5和6毫米的旋轉(zhuǎn)軸收集器,用于生產(chǎn)管狀納米纖維膜。

         

        溫控箱

        將紡絲區(qū)加熱到40°C。

        除濕機連體箱

        環(huán)境濕度調(diào)節(jié)在25%和室內(nèi)條件之間。

        真空吸盤收集器

        將固體基材(金屬,玻璃,薄板,薄片)真空固定在固定板收集器上。

        延長保修

        標準設備具有1年保修。此外,還可以提供延長保修期的機器保修





        關(guān)于INOVENSO

        超過12年的靜電紡絲實踐經(jīng)驗??煽康募{米纖維生產(chǎn)設備

        我們于2007年開始了我們的學術(shù)活動,于納米纖維膜小組(NanoFMG)的納米技術(shù)研究。在于提高靜電紡絲過程中的納米纖維質(zhì)量之后,我們于2010年成立了我們出生的公司Inovenso。我們的名字是Innovative Engineering Solutions的縮寫。我們旨在開發(fā)非常高效的靜電紡絲機,并加速納米纖維科學。我們迅速成為學術(shù)界和工業(yè)界的橋梁公司,并自豪地為使用聚合物納米纖維的數(shù)百項科學項目做出了貢獻,這些應用廣泛應用于生物醫(yī)學,組織工程,制藥,能源,過濾,材料科學,紡織,農(nóng)業(yè),化妝品以及許多其他領域其他。

        通過開發(fā)定制的靜電紡絲設備,從任何實驗室規(guī)模的臺式入門套件到工業(yè)規(guī)模的靜電紡絲設備,我們引入了新的創(chuàng)新方法來克服納米纖維生產(chǎn)領域中的許多常見障礙,例如可伸縮性,靈活性,標準化和可重復性。只有與我們的客戶緊密合作,了解他們的實際需求并分享他們的擔憂和問題,才有可能。

        我們對設備和服務的需求在范圍內(nèi)都很高,我們將業(yè)務移至美國馬薩諸塞州波士頓。如今,Inovenso Inc.憑借其跨學科的部門和團隊正在創(chuàng)建納米技術(shù)生態(tài)系統(tǒng),并已成為大牛,在擁有超過350多種設備,并獲得MIT,斯坦福大學,康奈爾大學等大學和3M等公司的推薦,霍尼韋爾(中國)和許多其他公司。

        我們提供三種主要類別的多種靜電紡絲設備,如實驗室規(guī)模,半工業(yè)和工業(yè)規(guī)模的納米纖維生產(chǎn)靜電紡絲設備。目前,我們正在制造基于針的,混合式,單噴嘴和多噴嘴靜電紡絲設備及其配件。

        總而言之,Inovenso Inc.創(chuàng)造了適合客戶和合作伙伴需求的合適技術(shù),并通過從臺架研究到市場生產(chǎn)的wu限咨詢支持,認可了他們的納米技術(shù)項目。


        應用及用戶案例:


        科研文獻


        1. Optimization of Electrospinning Parameters for Poly (Vinyl Alcohol) and Glycine Electrospun Nanofibers
        2. Optimization of Electrospinning Parameters for Poly (Vinyl Alcohol) and Glycine Electrospun Nanofibers
        3. Optimization of functionalized electrospun fibers for the development of colorimetric oxygen indicator as an intelligent food packaging system
        4. Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility
          Fatma Nur Parin, Cigdem Inci Aydemir, Gokce Taner, Kenan Yildirim
          Bursa Technical University
        5. Engineering multifunctional bactericidal nanofibers for abdominal hernia repair
          Anderson Oliveira Lobo, Samson Afewerki
          Harvard Medical School
        6. An electrochemical immunosensor modified with titanium IV oxide/polyacrylonitrile nanofibers for the determination of carcino embriyonic antigen
        7. Polycaprolactone/silk fibroin electrospun nanofibers‐based lateral flow test strip for quick and facile determination of bisphenol A in breast milk
          Begüm Gürel‐G?kmen, Hava Dudu Taslak, Ozan ?zcan, Necla ?par, Tu?ba Tunali‐Akbay
          Marmara University
        8. Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties
          Tugba Eren Boncu, Nurten Ozdemir
          Ankara University
        9. Preparation of Silver Cyclohexane di Carboxylate: Β-cyclodextrin Inclusion Complexes and Their Use in the Production of Poly(vinyl alcohol) Nanowebs
          R?za ATAV, Aylin YILDIZ, Derman VATANSEVER BAYRAMOL, Ahmet ?zgür A?IRGAN , U?ur ERG?NAY
          Tekirda? Nam?k Kemal University
        10. Holistic Investigation of the Electrospinning Parameters for High Percentage of β-phase in PVDF Nanofibers
          Rahul Kumar Singh, Sun Woh Lye, Jianmin Miao
          Nanyang Technological University, Singapore
        11. Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air
          Esra Buyukada-Kesici, Elifnur Gezmis-Yavuz, Dila Aydina, Elif Cansoy, Kadir Alp, Derya Y.Koseoglu-Imer
        12. Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion
          Rumeysa Bilginer, Dilce Ozkendir‐Inanc, Umit Hakan Yildiz, Ahu Arslan‐Yildiz

          https://onlinelibrary.wiley.com/doi/abs/10.1002/app.50287

        13. Electrospun core-sheath PAN@ PPY nanofibers decorated with ZnO: photo-induced water decontamination enhanced by formation of a heterojunction
          G Capilli, P Calza, C Minero, M Cerruti. McGill University

          https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

        14. Dual electrospinning of a nanocomposites biofilm: Potential use as an antimicrobial barrier
          Judith Vergara-Figueroa, Serguei Alejandro-Martin, Fabiola Cerda-Leal, William Gacitúa. Universidad del Bío-Bío

          https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

        15. Helicoidally Arranged Polyacrylonitrile Fiber-Reinforced Strong and Impact-Resistant Thin Polyvinyl Alcohol Film Enabled by Electrospinning-Based Additive Manufacturing
          Rahul Sahay , Komal Agarwal, Anbazhagan Subramani , Nagarajan Raghavan

          https://scholar.google.com.tr/scholar_url?url=https://www.mdpi.com/2073-4360/12/10/2376/pdf&hl=tr&sa=X&d=15229915842923991540&ei=HfiNX_izGIy0ygT3m6bYBw&scisig=AAGBfm2QTPnRcmJgdY7WJqhwO9OTLvnGXA&nossl=1&oi=scholaralrt&hist=NSAhIeoAAAAJ:16172062561605054270:AAGBfm0NgWrUaFisOH1m3cVrJiuKCbAA7g&html=

        16. Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering
          Parinaz Saadat, Esbah Tabaei, Mahtab Asadian, Rouba Ghobeira

          https://www.sciencedirect.com/science/article/abs/pii/S0144861720313849

        17. Functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications
          Danilo Martins dos Santos, Daniel S. Corrêa, Eliton S Medeiros, Juliano Oliveira, and LUIZ Henrique C. MATTOSO

          https://pubs.acs.org/doi/abs/10.1021/acsami.0c12410

        18. Composite Membranes with Nanofibrous Cross-hatched Supports for Reverse Osmosis Desalination
          Seungju Kim , Daniel E. Heath, and Sandra E. Kentish

          https://pubs.acs.org/doi/abs/10.1021/acsami.0c12588

        19. A Bimodal Protein Fabric Enabled via In-Situ Diffusion for High-Performance Air Filtration
        20. THE DEVELOPMENT AND OPTIMIZATION OF FLUORESCENT SENSORS FOR CONTINUOUS MONITORING OF PHYSIOLOGICAL MOLECULES IN VIVO
        21. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering
          Koushanee Madub Nowsheen Goonoo Fanny Gimié Imade Ait Arsa HolgerSch?nherr Archana Bhaw-Luximon

          https://www.sciencedirect.com/science/article/pii/S014486172031198X

        22. Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals
        23. Electrospinning of PLA and PLA/POSS nanofibers: Use of Taguchi optimization for process parameters
          Yelda Meyva‐Zeybek, Cevdet Kaynak

          https://onlinelibrary.wiley.com/doi/abs/10.1002/app.49685

        24. Centella Asiatica Extract Containing Bilayered Electrospun Wound Dressing
          Ismail Alper Isoglu & Nuray Koc

          https://link.springer.com/article/10.1007/s12221-020-9956-y

        25. Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis
          JS Jaime-Ferrer, M Mosqueda-Quintero

          https://www.degruyter.com/view/journals/ijcre/ahead-of-print/article-10.1515-ijcre-2020-0020/article-10.1515-ijcre-2020-0020.xml

        26. Electrochemical evaluation of Titanium (IV) Oxide/Polyacrylonitrile electrospun discharged battery coals as supercapacitor electrodes
          Sema Aslan, Derya Bal Altunta?, ?a?da? Ko?ak, Hülya Kara Suba?at

          https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.202060239

        27. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review
          Brabu Balusamy, Asli Celebioglu, Anitha Senthamizhan, Tamer Uyar

          https://www.sciencedirect.com/science/article/abs/pii/S0168365920304223

        28. Stabilizing 3 nm-Pt nanoparticles in close proximity on rutile nanorods-decorated-TiO2 nanofibers by improving support uniformity for catalytic reactions
          Wanlin Fu, Zhihui Li, Yunpeng Wang, Yueming Sun, Yunqian Dai. Southeast University, Nanjing.

          https://www.sciencedirect.com/science/article/abs/pii/S1385894720321410#!

        29. 29
          Photoluminescence Properties of a New Sm(III) Complex/PMMA Electrospun Composite Fibers
          Hulya Kara, Gorkem Oylumluoglu & Mustafa Burak Coban. Balikesir University.

          https://link.springer.com/article/10.1007/s10876-019-01677-7

        30. Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering
          Aysen Akturk, Melek Erol Taygun, Gultekin Goller Istanbul Technical University Scientific Research Projects Foundation, Grant/Award Number: 38881

          https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25545

        31. Preparation And Characterization Of Polyvinyl Borate/Polyvinyl Alcohol (PVB/PVA) Blend Nanofibers

          Koysuren, O., Karaman, M. and Dinc, H. (2012), Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Polym. Sci., 124: 2736–2741. doi:10.1002/app.35035

          (http://onlinelibrary.wiley.com/doi/10.1002/app.35035/full)

        32. The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process

          O?teyaka, M. O., O?zel, E., Y?ld?r?m, M. M., Aslan, M. H., Oral, A. Y., O?zer, M., & C?aglar, S. H. (2011). The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process. doi:10.1063/1.3663116

          (https://aip.scitation.org/doi/abs/10.1063/1.3663116)

        33. Initiated Chemical Vapor Deposition Of Ph Responsive Poly(2-Diisopropylamino)Ethyl Methacrylate Thin Films

          Mustafa Karaman, Nihat ?abuk, Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films, Thin Solid Films, Volume 520, Issue 21, 31 August 2012, Pages 6484-6488, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2012.06.083

          (http://www.sciencedirect.com/science/article/pii/S0040609012008140)

        34. S?cak Filament Destekli Kimyasal Buhar Biriktirme Y?ntemi ?le Süper Su ?tici Nano Kaplama Sentezi

          ?abuk, N. (2012). S?cak filament destekli kimyasal buhar biriktirme y?ntemi ile süper su itici nano kaplama sentezi (Doctoral dissertation, Sel?uk ?niversitesi Fen Bilimleri Enstitüsü).

          (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1151)

        35. Preparation And Characterization Of Polyvinyl Alcohol/Carbon Nanotube (PVA/CNT) Conductive Nanofibers

          K?ysüren, O. (2012). Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers. Journal of Polymer Engineering, 32(6-7), pp. 407-413. Retrieved 29 Apr. 2016, from doi:10.1515/polyeng-2012-0068

          (http://www.degruyter.com/view/j/polyeng.2012.32.issue-6-7/polyeng-2012-0068/polyeng-2012-0068.xml)

        36. The development and design of fluorescent sensors for continuous in vivo glucose monitoring

          Balaconis, Mary K., “The development and design of fluorescent sensors for continuous in vivo glucose monitoring” (2014). Mechanical Engineering Dissertations. Paper 54.

          (http://hdl.handle.net/2047/d20004844)

        37. Effects of different sterilization methods on polyester surfaces

          Duzyer, Sebnem & Koral Ko?, Serpil & Hockenberger, Asli & Evke, Elif & Kahveci, Zeynep & Uguz, Agah. (2013). Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 23. 319-324.

          (https://www.researchgate.net/publication/272672175_Effects_of_different_sterilization_methods_on_polyester_surfaces)

        38. 38
          Polymer Nanofibers: Building Blocks for Nanotechnology

          Pisignano, D. (2013). Polymer nanofibers: building blocks for nanotechnology. Cambridge: Royal Society of Chemistry.

          (https://books.google.com.tr/books?id=BnQoDwAAQBAJ&hl=tr)

        39. 39
          Affecting Parameters On Electrospinning Process And Characterization Of Electrospun Gelatin Nanofibers

          Nagihan Okutan, P?nar Terzi, Filiz Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocolloids, Volume 39, August 2014, Pages 19-26, ISSN 0268-005X, http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.

          (http://www.sciencedirect.com/science/article/pii/S0268005X13004062)

        40. 40
          Design Of A Novel Nozzle Prototype For Increased Productivity And Improved Coating Quality During Electrospinning

          UCAR, Nuray; UCAR, Mehmet; KIZILDA?, Nuray. DESIGN OF A NOVEL NOZZLE PROTOTYPE FOR INCREASED PRODUCTIVITY AND IMPROVED COATING QUALITY DURING ELECTROSPINNING. Journal of Textile & Apparel/Tekstil ve Konfeksiyon, 2013, 23.3.

          (https://www.researchgate.net/publication/293543273_DESIGN_OF_A_NOVEL_NOZZLE_PROTOTYPE_FOR_INCREASE_PRODUCTIVITY_AND_IMPROVED_COATING_QUALITY_DURING_ELECTROSPINNING)

        41. 41
          Electrospun Polyvinyl Borate/Poly(Methyl Methacrylate) (PVB/PMMA) Blend Nanofibers

          Koysuren, O., Karaman, M., Yildiz, H. B., Koysuren, H. N., & Din?, H. (2014). Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 337-341.

          (http://www.tandfonline.com/doi/abs/10.1080/00914037.2013.845188)

        42. 42
          Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review

          Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromolecular Materials and Engineering, 298(5), 504-520.

          (http://onlinelibrary.wiley.com/doi/10.1002/mame.201200290/full)

        43. Template Assisted Synthesis Of Photocatalytic Titanium Dioxide Nanotubes By Hot Filament Chemical Vapor Deposition Method

          Mustafa Karaman, Fatma Sar?ipek, ?zcan K?ysüren, H. Bekir Y?ld?z, Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method, Applied Surface Science, Volume 283, 15 October 2013, Pages 993-998, ISSN 0169-4332, http://dx.doi.org/10.1016/j.apsusc.2013.07.058.

          (http://www.sciencedirect.com/science/article/pii/S016943321301369X)

        44. 44
          UV Illumination Effects On Electrical Characteristics Of Metal–Polymer–Semiconductor Diodes Fabricated With New Poly(Propylene Glycol)-B-Polystyrene Block Copolymer

          G?k?en, M. Y?ld?r?m, A. Demir, A. All?, S. All?, B. Hazer, UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer, Composites Part B: Engineering, Volume 57, February 2014, Pages 8-12, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.09.038.

          (http://www.sciencedirect.com/science/article/pii/S1359836813005519)

        45. Experimental Study on Relationship of Applied Power And Feeding Rate on Production of Polyurethane Nanofibre

          Oteyaka, M., Ozel, E., & Y?ld?r?m, M. (2014). Experimental Study On Relationship Of Applied Power And Feeding Rate On Production Of Polyurethane Nanofibre. Gaz? Un?vers?ty Journal Of Sc?ence, 26(4), 611-618.

          (http://gujs.gazi.edu.tr/article/view/1060000855)

        46. 46
          Electrospun Fibers For Vaginal Anti-HIV Drug Delivery

          Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow, Electrospun fibers for vaginal anti-HIV drug delivery, Antiviral Research, Volume 100, Supplement, December 2013, Pages S9-S16, ISSN 0166-3542, http://dx.doi.org/10.1016/j.antiviral.2013.09.022.

          (http://www.sciencedirect.com/science/article/pii/S0166354213002829)

        47. 47
          Polivinil Borat Sentezin ; Elektrospin Y?ntemiyle Nanofiber Haz?rlanmas? Ve Karakterizasyonu

          Din?, H. (2013). Polivinil borat sentezin; elektrospin y?ntemiyle nanofiber haz?rlanmas? ve karakterizasyonu (Doctoral dissertation, Sel?uk ?niversitesi Fen Bilimleri Enstitüsü).

          (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1158)

        48. 48
          Commercial Viability Analysis of Lignin Based Carbon Fibre

          Chen, M.C. (2014). Commercial Viability Analysis of Lignin Based Carbon Fibre.

          (https://core.ac.uk/download/pdf/56378549.pdf)

        49. 49
          Electrospun Antibacterial Nanofibers: Production, Activity, And In Vivo Applications

          Gao, Y., Bach Truong, Y., Zhu, Y. and Louis Kyratzis, I. (2014), Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 131, 40797, doi: 10.1002/app.40797

          (http://onlinelibrary.wiley.com/doi/10.1002/app.40797/full)

        50. 50
          Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions

          Balaconis, M. K., Luo, Y., & Clark, H. A. (2015). Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst, 140(3), 716–723. doi:10.1039/c4an01775g

          (https://pubs.rsc.org/en/content/articlelanding/2015/AN/C4AN01775G#!divAbstract)

        51. 51
          Utilization Of Electrospun Nanofibers Containing Gelatin Or Gelatin-cellulose Acetate For Preventing Syneresis In Tomato Ketchup

          Hendessi, S. (2014). Jelat?n Veya Jelat?n-selüloz Asetat ??eren Nanoliflerin Domates Ket?aplar?nda Sineresisi ?nleyici Olarak Kullan?lmas? (Doctoral dissertation, Fen Bilimleri Enstitüsü).

          (http://hdl.handle.net/11527/2193)

        52. 52
          Thermal Conductivity Of Electrospun Polyethylene Nanofibers

          Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

          (http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d#!divAbstract)

        53. 53
          Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs

          Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2015). Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 429-432.

          (http://www.waset.org/publications/10001167)

        54. 54
          Preparation And In Vitro Characterization Of Electrospun 45S5 Bioactive Glass Nanofibers

          Aylin M. Deliormanl?, Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers, Ceramics International, Volume 41, Issue 1, Part A, January 2015, Pages 417-425, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2014.08.086.

          (http://www.sciencedirect.com/science/article/pii/S0272884214013236)

        55. 55
          Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

          Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., … & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Scientific reports, 5.

          (http://www.nature.com/articles/srep08246?message-global=remove&WT.ec_id=SREP-639-20150210)

        56. 56
          Cellulose Acetate–Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability

          Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., … & Baji, A. (2015). Cellulose Acetate–Poly (N‐isopropylacrylamide)‐Based Functional Surfaces with Temperature‐Triggered Switchable Wettability. Macromolecular rapid communications, 36(14), 1368-1373.

          (http://onlinelibrary.wiley.com/doi/10.1002/marc.201500037/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage=)

        57. 57
          Electrospinning Of Nanofibrous Polycaprolactone (PCL) And Collagen-Blended Polycaprolactone For Wound Dressing And Tissue Engineering

          Zeybek, B., Duman, M., & ?rkmez, A. S. (2014). Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak University Journal of Material Sciences, 3(1), 121.

          (http://search.proquest.com/openview/ecfe94e89a75c0739c7fd72ba51bf90f/1?pq-origsite=gscholar)

        58. 58
          Phosphine-Functionalized Electrospun Poly(Vinyl Alcohol)/Silica Nanofibers As Highly Effective Adsorbent For Removal Of Aqueous Manganese And Nickel Ions

          Md. Shahidul Islam, Md. Saifur Rahaman, Jeong Hyun Yeum, Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 484, 5 November 2015, Pages 9-18, ISSN 0927-7757, http://dx.doi.org/10.1016/j.colsurfa.2015.07.023.

          (http://www.sciencedirect.com/science/article/pii/S092777571530100X)

        59. 59
          Free-Standing Ni–Nio Nanofiber Cloth Anode For High Capacity And High Rate Li-Ion Batteries

          Jeffrey Bell, Rachel Ye, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, Cengiz S. Ozkan, Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries, Nano Energy, Volume 18, November 2015, Pages 47-56, ISSN 2211-2855, http://dx.doi.org/10.1016/j.nanoen.2015.09.013.

          (http://www.sciencedirect.com/science/article/pii/S2211285515003742)

        60. 60
          Coaxial Electrospinning Of WO3 Nanotubes Functionalized With Bio-?nspired Pd Catalysts And Their Superior Hydrogen Sensing Performance

          Choi, S. J., Chattopadhyay, S., Kim, J. J., Kim, S. J., Tuller, H. L., Rutledge, G. C., & Kim, I. D. (2016). Coaxial electrospinning of WO 3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale.

          (http://pubs.rsc.org/is/content/articlelanding/2016/nr/c5nr06611e/unauth#!divAbstract)

        61. 61
          Electrospun Cerium And Gallium-Containing Silicate Based 13-93 Bioactive Glass Fibers For Biomedical Applications

          Aylin M. Deliormanl?, Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications, Ceramics International, Volume 42, Issue 1, Part A, January 2016, Pages 897-906, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2015.09.016.

          (http://www.sciencedirect.com/science/article/pii/S0272884215017241)

        62. 62
          Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide For Antibacterial Wound Dressing

          El-Aassar, M. R., El-Deeb, N. M., Hassan, H. S., & Mo, X. (2015). Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied biochemistry and biotechnology, 1-15.

          (http://link.springer.com/article/10.1007/s12010-015-1962-y)

        63. 63
          Preparation, In Vitro Mineralization And Osteoblast Cell Response Of Electrospun 13–93 Bioactive Glass Nanofibers

          Aylin M. Deliormanl?, Preparation, in vitro mineralization and osteoblast cell response of electrospun 13–93 bioactive glass nanofibers, Materials Science and Engineering: C, Volume 53, 1 August 2015, Pages 262-271, ISSN 0928-4931, http://dx.doi.org/10.1016/j.msec.2015.04.037.

          (http://www.sciencedirect.com/science/article/pii/S0928493115300394)

        64. 64
          Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions

          Guclu, S., Pasaoglu, M. E., & Koyuncu, I. (2015). Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions. Desalination and Water Treatment, 1-9.

          (http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1024747)

        65. 65
          Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering

          Ogunlaja, A. S., & Tshentu, Z. R. (2015). Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 281.

          (https://books.google.com.tr/books?hl=tr&lr=&id=oGa2CgAAQBAJ&oi=fnd&pg=PA281&dq=inovenso&ots=D8gIXZpcRB&sig=V_3qD1gM2EfbBpWrKSkxMgXhGGA&redir_esc=y#v=onepage&q=inovenso&f=false)

        66. 66
          Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers

          Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. Investigation of wettability and moisture sorption property of electrospun poly (N-isopropylacrylamide) nanofibers. MRS Advances, 1-6.

          (http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10198457&fileId=S205985211600164X)

        67. 67
          Alternative Solvent Systems For Polycaprolactone Nanowebs Via Electrospinning

          Ipek Y Enis, Jakub Vojtech, and Telem G Sadikoglu, Alternative solvent systems for polycaprolactone nanowebs via electrospinning, Journal of Industrial Textiles 1528083716634032, first published on February 17, 2016 doi:10.1177/1528083716634032

          (http://jit.sagepub.com/content/early/2016/02/17/1528083716634032.abstract)

        68. 68
          Controlled Release Of A Hydrophilic Drug From Coaxially Electrospun Polycaprolactone Nanofibers

          Zahida Sultanova, Gizem Kaleli, G?zde Kabay, Mehmet Mutlu, Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers, International Journal of Pharmaceutics, Volume 505, Issues 1–2, 30 May 2016, Pages 133-138, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2016.03.032.

          (http://www.sciencedirect.com/science/article/pii/S0378517316302320)

        69. 69
          Recent Developments In Micro- And Nanofabrication Techniques For The Preparation Of Amorphous Pharmaceutical Dosage Forms

          Sheng Qi, Duncan Craig, Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms, Advanced Drug Delivery Reviews, Available online 9 January 2016, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2016.01.003.

          (http://www.sciencedirect.com/science/article/pii/S0169409X16300059)

        70. 70
          Fabrication Of Electrospun Nanofiber Catalysts And Ammonia Borane Hydrogen Release Efficiency

          Bilge Co?kuner Filiz, Aysel Kantürk Figen, Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency, International Journal of Hydrogen Energy, Available online 18 April 2016, ISSN 0360-3199, http://dx.doi.org/10.1016/j.ijhydene.2016.03.182.

          (http://www.sciencedirect.com/science/article/pii/S0360319915318632)

        71. 71
          Enhancement Of Mechanical And Physical Properties Of Electrospun PAN Nanofiber Membranes Using PVDF Particles

          Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016). Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalination and Water Treatment, 1-11.

          (http://www.tandfonline.com/doi/abs/10.1080/19443994.2016.1159253)

        72. 72
          Proposal Of A Framework For Scale-Up Life Cycle Inventory: A Case Of Nanofibers For Lithium Iron Phosphate Cathode Applications

          Simon, B., Bachtin, K., Kili?, A., Amor, B., & Weil, M. (2016). Proposal of a framework for scale‐up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management. doi: [10.1002/ieam.1788].

          (http://onlinelibrary.wiley.com/doi/10.1002/ieam.1788/abstract)

        73. 73
          Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation

          Ganesh, V. A., Ranganath, A. S., Baji, A., Wong, H. C., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation. Macromolecular Materials and Engineering.

          (http://onlinelibrary.wiley.com/doi/10.1002/mame.201600074/abstract)

        74. 74
          On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength

          Sahay, R., Parveen, H., Ranganath, A. S., Ganesh, V. A., & Baji, A. (2016). On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Advances, 6(53), 47883–47889. doi:10.1039/c6ra05757h

          (https://pubs.rsc.org/en/content/articlelanding/2016/RA/c6ra05757h#!divAbstract)

        75. 75
          Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

          G?nen, S. ?., Erol Taygun, M., Aktürk, A., & Kü?ükbayrak, S. (2016). Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design. Materials Science and Engineering: C, 67, 684–693. doi:10.1016/j.msec.2016.05.065

          (https://www.sciencedirect.com/science/article/pii/S0928493116304982)

        76. 76
          Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing

          Mabrouk, M., Choonara, Y. E., Marimuthu, T., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2016). Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 507(1-2), 41–49. doi:10.1016/j.ijpharm.2016.05.011

          (https://www.sciencedirect.com/science/article/pii/S0378517316303751?via%3Dihub)

        77. 77
          Fabrication of protein scaffold by electrospin coating for artificial tissue

          Ozcan, F., Ertul, S., & Maltas, E. (2016). Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 182, 359–362. doi:10.1016/j.matlet.2016.07.010

          (https://www.sciencedirect.com/science/article/abs/pii/S0167577X16311065)

        78. 78
          Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing

          Di, W., Czarny, R. S., Fletcher, N. A., Krebs, M. D., & Clark, H. A. (2016). Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 33(10), 2433–2444. doi:10.1007/s11095-016-1987-0

          (https://link.springer.com/article/10.1007/s11095-016-1987-0)

        79. 79
          Preparation and characterization of electrospun nanofibers containing glutamine

          Tort, S., & Acartürk, F. (2016). Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydrate Polymers, 152, 802–814. doi:10.1016/j.carbpol.2016.07.028

          (https://www.sciencedirect.com/science/article/pii/S0144861716308177)

        80. 80
          Yap?l? Poli(Akrilonitril-Vinil Asetat)/Grafen Oksit Yap?lar?n Karakterizasyonu

          T?YEK, ? , YAZICI, M , ALMA, M , D?NMEZ, U , YILDIRIM, B , SALAN, T , URU?, S , KARATA?, ? , KARTER?, ? . (2016). Nanolif Yap?l? Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yap?lar?n Karakterizasyonu. Tekstil ve Mühendis, 23 (102), 0-0.

          (https://dergipark.org.tr/teksmuh/issue/24718/261437)

        81. 81
          Durable adhesives based on electrospun poly(vinylidene fluoride) fibers

          Sahay, R., Baji, A., Ranganath, A. S., & Anand Ganesh, V. (2016). Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. Journal of Applied Polymer Science, 134(2). doi:10.1002/app.44393

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.44393)

        82. 82
          Electrospinning—Commercial Applications, Challenges and Opportunities

          Kannan, B., Cha, H., & Hosie, I. C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. Nano-Size Polymers, 309–342. doi:10.1007/978-3-319-39715-3_11

          (https://link.springer.com/chapter/10.1007/978-3-319-39715-3_11)

        83. 83
          US20160274030A1 Compositions and methods for measurement of analytes

          Northeastern University, Boston, MA(US) (2016). Compositions and methods for measurement of analytes. US20160274030A1.

          (https://patents.google.com/patent/US20160274030A1/en)

        84. 84
          Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

          Sebnem DUZYER [1], Asli HOCKENBERGER [2], Agah UGUZ [3], Elif EVKE [4], ZeynepKAHVEC? [5]. 358 412. Uluda? University Journal of The Faculty of Engineering, 21 (2), 201-218. DOI: 10.17482/uujfe.04230

          (https://doi.org/10.17482/uujfe.04230)

        85. 85
          Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications

          Sahay, R., Parveen, H., Baji, A., Ganesh, V. A., & Ranganath, A. S. (2016). Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. Journal of Materials Science, 52(5), 2435–2441. doi:10.1007/s10853-016-0537-9

          (https://link.springer.com/article/10.1007/s10853-016-0537-9)

        86. 86
          Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications

          Deliormanl?, A. M. (2017). Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International, 43(4), 3531–3539. doi:10.1016/j.ceramint.2016.11.078

          (https://www.sciencedirect.com/science/article/pii/S0272884216320697)

        87. 87
          Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications

          Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 302(2), 1600387. doi:10.1002/mame.201600387

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201600387)

        88. 88
          A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability

          ?spirli Do?a?, Y., Deveci, ?., Mercimek, B., & Teke, M. (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. International Journal of Biological Macromolecules, 96, 302–311. doi:10.1016/j.ijbiomac.2016.11.120

          (https://www.sciencedirect.com/science/article/pii/S0141813016319572)

        89. 89
          Crystallisation of amorphous fenofibrate and potential of the polymer blend electrospun matrices to stabilise in its amorphous form

          Tipduangta, P. (2016). Retrieved from https://ueaeprints.uea.ac.uk/61721/

          (https://ueaeprints.uea.ac.uk/61721/)

        90. 90
          Smartphone-based detection of dyes in water for environmental sustainability

          Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585. doi:10.1039/c6ay03073d

          (https://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d/unauth#!divAbstract)

        91. 91
          Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications

          Kolbuk, D. (2016). Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. Nanofiber Research – Reaching New Heights. doi:10.5772/64177

          (http://dx.doi.org/10.5772/64177)

        92. 92
          Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration

          ?ztatl?, H., & Ege, D. (2016). Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration. MRS Advances, 2(24), 1291–1296. doi:10.1557/adv.2016.663

          (https://doi.org/10.1557/adv.2016.663)

        93. 93
          Drug Delivery and Development of Anti-HIV Microbicides

          das Neves, J. (Ed.), Sarmento, B. (Ed.). (2015). Drug Delivery and Development of Anti-HIV Microbicides. New York: Jenny Stanford Publishing, https://doi.org/10.1201/b17559

          (https://doi.org/10.1201/b17559)

        94. 94
          Thin film composite membranes for forward osmosis supported by commercial nanofiber nonwovens

          Maqsud R. Chowdhury, Liwei Huang, and Jeffrey R. McCutcheon

          Industrial & Engineering Chemistry Research 2017 56 (4), 1057-1063

          DOI: 10.1021/acs.iecr.6b04256

          (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b04256)

        95. 95
          Dry-adhesives based on hierarchical poly (methyl methacrylate) electrospun fibers

          Sahay, R., Baji, A., Parveen, H., & Ranganath, A. S. (2017). Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers. Applied Physics A, 123(3). doi:10.1007/s00339-017-0816-6

          (https://link.springer.com/article/10.1007/s00339-017-0816-6)

        96. 96
          Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality

          Cerkez I, Sezer A, Bhullar SK. 2017 Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality.R. Soc. open sci. 4: 160911. http://dx.doi.org/10.1098/rsos.160911

          (https://royalsocietypublishing.org/doi/full/10.1098/rsos.160911)

        97. 97
          Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production

          Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 302(7), 1700002. doi:10.1002/mame.201700002

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700002)

        98. 98
          Thermoresponsive electrospun membrane with enhanced wettability

          Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. (2017). Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv., 7(32), 19982–19989. doi:10.1039/c6ra27848e

          (https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra27848e)

        99. 99
          Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application

          Thakur, N., Ranganath, A. S., Agarwal, K., & Baji, A. (2017). Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application. Macromolecular Materials and Engineering, 302(7), 1700124. doi:10.1002/mame.201700124

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700124)

        100. 100
          Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications

          Yilmaz, M., Erkartal, M., Ozdemir, M., Sen, U., Usta, H., & Demirel, G. (2017). Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 9(21), 18199–18206. doi:10.1021/acsami.7b03042

          (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

        101. 101
          A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance

          Islam, M. S., McCutcheon, J. R., & Rahaman, M. S. (2017). A high flux polyvinyl acetate-coated electrospun nylon 6/SiO 2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. Journal of Membrane Science, 537, 297–309. doi:10.1016/j.memsci.2017.05.019

          (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

        102. 102
          Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures

          Sahay, R., & Baji, A. (2017). Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures. Journal of Materials Science, 52(17), 10592–10599. doi:10.1007/s10853-017-1191-6

          (https://link.springer.com/article/10.1007/s10853-017-1191-6)

        103. 103
          Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

          Aksoy, O. E., Ates, B., & Cerkez, I. (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52(17), 10013–10022. doi:10.1007/s10853-017-1240-1

          (https://link.springer.com/article/10.1007/s10853-017-1240-1)

        104. 104
          Effects of pre-and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

          Asadian, M., Grande, S., Morent, R., Nikiforov, A., Declercq, H., & De Geyter, N. (2017). Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 841, 012018. doi:10.1088/1742-6596/841/1/012018

          (https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012018/meta)

        105. 105
          Filtration of juices by using electrospun pan membrane

          ALTAY F?L?Z,AZIZZADEH FARZANEH, The Fifth International Symposium Frontiers in Polymer Science (POLY 2017), Seville/?SPANYA, 17 May?s 2017

          (https://akademi.itu.edu.tr/search-results?st=PAN%20polymer)

        106. 106
          Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials

          Livshits, M. (2017). Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

          (https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1490713190973503)

        107. 107
          Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility

          KARAMAN, M., G?RSOY, M., AYK?L, F., TOSUN, Z., KARS, M. D., & YILDIZ, H. B. (2017). Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 19(8), 085503. doi:10.1088/2058-6272/aa6fec

          (https://iopscience.iop.org/article/10.1088/2058-6272/aa6fec/meta)

        108. 108
          Mechanical properties and fatigue analysis on poly(ε- caprolactone)-polydopamine-coated nanofibers and poly(ε- caprolactone)-carbon nanotube composite scaffolds

          Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J.-R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 94, 208–221. doi:10.1016/j.eurpolymj.2017.07.013

          (https://www.sciencedirect.com/science/article/pii/S0014305717302999)

        109. 109
          Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing

          Tort, S., Acartürk, F., & Be?ikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1-2), 642–653. doi:10.1016/j.ijpharm.2017.07.027

          (https://www.sciencedirect.com/science/article/pii/S0378517317306269)

        110. 110
          Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells

          Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., … Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5(8), 1567–1578. doi:10.1039/c7bm00323d

          (https://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00323d/unauth#!divAbstract)

        111. 111
          Thermoresponsive Cellulose Acetate?Poly(N‐isopropylacrylamide) Core?Shell Fibers for Controlled Capture and Release of Moisture

          Thakur, N., Sargur Ranganath, A., Sopiha, K., & Baji, A. (2017). Thermoresponsive Cellulose Acetate–Poly(N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and Release of Moisture. ACS Applied Materials & Interfaces, 9(34), 29224–29233. doi:10.1021/acsami.7b07559

          (https://pubs.acs.org/doi/abs/10.1021/acsami.7b07559 )

        112. 112
          Microfibrous scaffolds enhance endothelial differentiation and organization of induced pluripotent stem cells

          Kim, J. J., Hou, L., Yang, G., Mezak, N. P., Wanjare, M., Joubert, L. M., & Huang, N. F. (2017). Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cellular and Molecular Bioengineering, 10(5), 417–432. doi:10.1007/s12195-017-0502-y

          (https://link.springer.com/article/10.1007/s12195-017-0502-y)

        113. 113
          Atmospheric pressure plasma jet treatment of poly-ε-caprolactone polymer solutions to improve electrospinning

          Grande, S., Van Guyse, J., Nikiforov, A. Y., Onyshchenko, I., Asadian, M., Morent, R., … De Geyter, N. (2017). Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 9(38), 33080–33090. doi:10.1021/acsami.7b08439

          (https://pubs.acs.org/doi/abs/10.1021/acsami.7b08439)

        114. 114
          Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering

          Ramphul, H., Bhaw-Luximon, A., & Jhurry, D. (2017). Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydrate Polymers, 178, 238–250. doi:10.1016/j.carbpol.2017.09.046

          (https://www.sciencedirect.com/science/article/pii/S0144861717310718)

        115. 115
          Thermoresponsive electrospun fibers for water harvesting applications

          Thakur, N., Baji, A., & Ranganath, A. S. (2018). Thermoresponsive electrospun fibers for water harvesting applications. Applied Surface Science, 433, 1018–1024. doi:10.1016/j.apsusc.2017.10.113

          (https://www.sciencedirect.com/science/article/pii/S0169433217330593)

        116. 116
          Effects of a Dielectric Barrier Discharge (DBD) Treatment on Chitosan/Polyethylene Oxide Nanofibers and Their Cellular Interactions

          Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P. S., Van Guyse, J., Cools, P., … De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.08.092

          (https://www.sciencedirect.com/science/article/pii/S0144861718310002)

        117. 117
          Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds

          Asadian, M., Declercq, H., Cornelissen, M., Morent, R., & De Geyter, N. (2017). Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds. In 31st International conference on surface modification technologies. (https://biblio.ugent.be/publication/8532609/file/8532610)

        118. 118
          Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications

          Senthamizhan, A., Balusamy, B., & Uyar, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. In Electrospun Materials for Tissue Engineering and Biomedical Applications (pp. 3-41). Woodhead Publishing.

          (https://doi.org/10.1016/B978-0-08-101022-8.00001-6)

        119. 119
          Solution electrospinning of nanofibers

          Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun Nanofibers (pp. 73-108). Woodhead Publishing.

          (http://dx.doi.org/10.1016/B978-0-08-100907-9.00004-0)

        120. 120
          Microesferas magne?ticas de polifluoruro de vinilideno para estimulacio?n celular in vitro. Determinacio?n y control de los para?metros del proceso de fabricacio?n

          CH?LIZ SANZ, SOF?A. (2017). Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación.

          (https://riunet.upv.es/handle/10251/89154)

        121. 121
          Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine

          Kili?, E., Yakar, A., & Bayramgil, N. P. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1), 8.

          (https://link.springer.com/article/10.1007/s10856-017-6013-5)

        122. 122
          Production and characterization of electrospun fish sarcoplasmic protein based nanofibers

          Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., … & Gunduz, O. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of food engineering, 222, 54-62.

          (https://doi.org/10.1016/j.jfoodeng.2017.11.013)

        123. 123
          Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

          Ozbek, B., Erdogan, B., Ekren, N., Oktar, F. N., Akyol, S., Ben-Nissan, B., … & Ozen, G. (2018). Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251-260.

          (https://link.springer.com/article/10.1007/s41779-017-0149-0)

        124. 124
          Raising Nanofiber Output- The Progress, Mechanisms, Challenges, and Reasons for the Pursuit

          Akampumuza, O., Gao, H., Zhang, H., Wu, D., & Qin, X. H. (2018). Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 303(1), 1700269. (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700269)

        125. 125
          Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation

          Ranganath, A. S., & Baji, A. (2018). Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromolecular Materials and Engineering, 303(11), 1800272.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201800272)

        126. 126
          Anti-corrosion coating for magnesium alloys- electrospun superhydrophobic polystyrene/SiO2 composite fibers

          Polat, N. H., Kap, ?., & Farzaneh, A. (2018). Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers. Turkish Journal of Chemistry, 42(3), 672-683.

          (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45567/572684)

        127. 127
          A comparative study of electrospinning process for two different collectors- The effect of the collecting method on the nanofiber diameters

          ?AVDAR, F. Y., & U?UZ, A. (2019). A comparative study of electrospinning process for two different collectors: The effect of the collecting method on the nanofiber diameters. Mechanical Engineering Journal, 6(1), 18-00298.

          (https://www.jstage.jst.go.jp/article/mej/6/1/6_18-00298/_article/-char/ja/)

        128. 128
          A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior

          Kabay, G., Demirci, C., Can, G. K., Meydan, A. E., Da?an, B. G., & Mutlu, M. (2018). A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. International journal of biological macromolecules, 114, 989-997.

          (https://www.sciencedirect.com/science/article/pii/S0141813018301107)

        129. 129
          A review of low density porous materials used in laser plasma experiments

          Nagai, K., Musgrave, C. S., & Nazarov, W. (2018). A review of low density porous materials used in laser plasma experiments. Physics of Plasmas, 25(3), 030501.

          (https://aip.scitation.org/doi/full/10.1063/1.5009689)

        130. 130
          Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption

          Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627-635.

          (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00112)

        131. 131
          Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering

          Deliormanl?, A. M., & Konyal?, R. (2019). Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. Journal of the Australian Ceramic Society, 55(1), 247-256.

          (https://link.springer.com/article/10.1007/s41779-018-0229-9)

        132. 132
          Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes

          Fu, X., Wang, Y., Fan, X., Scudiero, L., & Zhong, W. H. (2018). Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes. Small, 14(49), 1803564.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201803564)

        133. 133
          Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines

          Kim, S., Traore, Y. L., Ho, E. A., Shafiq, M., Kim, S. H., & Liu, S. (2018). Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta biomaterialia, 82, 12-23.

          (https://www.sciencedirect.com/science/article/pii/S1742706118305932)

        134. 134
          Development and characterization of methylprednisolone loaded delayed release nanofibers

          Turanl?, Y., Tort, S., & Acartürk, F. (2019). Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58-65.

          (https://www.sciencedirect.com/science/article/pii/S1773224718307780)

        135. 135
          Development of Carbon Nanofiber Yarns by Electrospinning

          Demir, A., Acikabak, B., & Ahan, Z. (2018, December). Development of Carbon Nanofiber Yarns by Electrospinning. In IOP Conference Series: Materials Science and Engineering (Vol. 460, No. 1, p. 012027). IOP Publishing.

          (https://iopscience.iop.org/article/10.1088/1757-899X/460/1/012027/meta)

        136. 136
          Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning

          Storti, E., Jankovsk?, O., Colombo, P., & Aneziris, C. G. (2018). Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 38(11), 4109-4117.

          (https://www.sciencedirect.com/science/article/abs/pii/S0955221918302632)

        137. 137
          Effect of polyvinyl alcohol (PVA)/chitosan (CS) blend ratios on morphological, optical and thermal properties of electrospun nanofibers

          A?IK, G., Kamaci, M., ?ZATA, B., & CANSOY, C. E. ?. (2019). Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turkish Journal of Chemistry, 43(1), 137-149.

          (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45572/572771)

        138. 138
          Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

          Kalkandelen, C., Ozbek, B., Ergul, N. M., Akyol, S., Moukbil, Y., Oktar, F. N., … & Gunduz, O. (2017, December). Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer. In IOP Conference Series: Materials Science and Engineering (Vol. 293, No. 1, p. 012001). IOP Publishing.

          (https://iopscience.iop.org/article/10.1088/1757-899X/293/1/012001/meta)

        139. 139
          Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles

          Unal, S., Oktar, F. N., & Gunduz, O. (2018). Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles. Materials Letters, 221, 107-110.

          (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304786)

        140. 140
          Electrospinning for membrane fabrication- Strategies and applications

          Tijing, L. D., Woo, Y. C., Yao, M., Ren, J., & Shon, H. K. (2017). 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Comprehensive Membrane Science and Engineering, 418–444. doi:10.1016/b978-0-12-409547-2.12262-0

          (https://www.researchgate.net/publication/313668516_Electrospinning_for_Membrane_Fabrication_Strategies_and_Applications)

        141. 141
          Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds

          Shin, J., Lee, E. J., & Ahn, D. U. (2018). Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds. Food Packaging and Shelf Life, 18, 107-114.

          (https://www.sciencedirect.com/science/article/abs/pii/S2214289418302448)

        142. 142
          Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives

          Demirkurt, M., Olcer, Y. A., Demir, M. M., & Eroglu, A. E. (2018). Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica chimica acta, 1014, 1-9.

          (https://www.sciencedirect.com/science/article/pii/S0003267018302058)

        143. 143
          Encapsulation of indocyanine green in poly(lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics

          Ege, Z. R., Akan, A., Oktar, F. N., Lin, C. C., Karademir, B., & Gunduz, O. (2018). Encapsulation of indocyanine green in poly (lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics. Materials Letters, 228, 148-151.

          (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18309133)

        144. 144
          Fabrication of electrospun poly(ethylene terephthalate) scaffolds: Characterization and their potential on cell proliferation in vitro

          D?ZYER, ?. (2017). FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO. TEKST?L VE KONFEKS?YON, 27(4), 334-341.

          (https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/33462/372022)

        145. 145
          Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles

          Aktürk, A., Taygun, M. E., Güler, F. K., Goller, G., & Kü?ükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255-262.

          (https://www.sciencedirect.com/science/article/abs/pii/S0927775718310252)

        146. 146
          Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering

          Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., … & De Geyter, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), 1800309.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800309)

        147. 147
          Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation

          Chen, T., Soroush, A., & Rahaman, M. S. (2018). Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation. Industrial & Engineering Chemistry Research, 57(43), 14535-14543.

          (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b03584)

        148. 148
          Interfacial Polymerization with Electrosprayed Microdroplets- Toward Controllable and Ultrathin Polyamide Membranes

          Ma, X. H., Yang, Z., Yao, Z. K., Guo, H., Xu, Z. L., & Tang, C. Y. (2018). Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 5(2), 117-122.

          (https://pubs.acs.org/doi/abs/10.1021/acs.estlett.7b00566)

        149. 149
          Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers

          Rezaei, F., Gorbanev, Y., Chys, M., Nikiforov, A., Van Hulle, S. W., Cos, P., … & De Geyter, N. (2018). Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 15(6), 1700226.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/ppap.201700226)

        150. 150
          Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications

          Avsar, G., Agirbasli, D., Agirbasli, M. A., Gunduz, O., & Oner, E. T. (2018). Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate polymers, 193, 316-325.

          (https://www.sciencedirect.com/science/article/pii/S0144861718303382)

        151. 151
          Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoletal Defects without Infection

          Ghannadian, P., Moxley Jr, J. W., Machado de Paula, M. M., Lobo, A. O., & Webster, T. J. (2018). Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoletal Defects without Infection. ACS Applied Bio Materials, 1(5), 1566-1578.

          (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00453)

        152. 152
          Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma- alignment, antibacterial activity, and biocompatibility

          Arik, N., Inan, A., Ibis, F., Demirci, E. A., Karaman, O., Ercan, U. K., & Horzum, N. (2019). Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polymer Bulletin, 76(2), 797-812.

          (https://link.springer.com/article/10.1007/s00289-018-2409-8)

        153. 153
          Morphological and Mechanical Characterization of Electrospun Polylactic Acid and Microcrystalline Cellulose

          Gaitán, A., & Gacitúa, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources, 13(2), 3659-3673.

          (https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3659_Gaitan_Morphological_Mechanical_Electrospun_Cellulose)

        154. 154
          Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis

          Jedrusik, N., Meyen, C., Finkenzeller, G., Stark, G. B., Meskath, S., Schulz, S. D., … & Tomakidi, P. (2018). Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced healthcare materials, 7(10), 1700895.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201700895)

        155. 155
          PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning

          Rogalski, J., Bastiaansen, C., & Peijs, T. (2018). PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning. Fibers, 6(2), 37.

          (https://www.mdpi.com/2079-6439/6/2/37)

        156. 156
          Patent - US20180142379A1 - Electrospinning of fluoropolymers

          Poss, A. J., Nalewajek, D., Cantlon, C. L., Lu, C., & Wo, S. (2018). U.S. Patent Application No. 15/802,673.

          (https://patents.google.com/patent/US20180142379A1/en)

        157. 157
          Patent - US20180215882A1 - Swellable and insoluble nanofibers and use thereof in the treatment of essentially aqueous effluents

          Viel, P., Benzaqui, M., & Shilova, E. (2018). U.S. Patent Application No. 15/750,044.

          (https://patents.google.com/patent/US20180215882A1/en)

        158. 158
          Patent - US20180301690A1 - Metal oxide nanofiber electrode and method

          Ozkan, C. S., Ozkan, M., Bell, J., & Ye, R. (2018). U.S. Patent Application No. 15/776,720. (https://patents.google.com/patent/US20180301690A1/en)

        159. 159
          Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers

          Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.

          (https://www.nature.com/articles/s41598-018-20714-5)

        160. 160
          Polivinil alkol kompozit nanoliflerin haz?rlanmas? ve kat?-faz polivinil alkol'u?n fotokatalitik bozunmas?

          K?ysüren, H. N., & K?ysüren, ?. (2018). Polivinil alkol kompozit nanoliflerin haz?rlanmas? ve kat?-faz polivinil alkolün fotokatalitik bozunmas?. Journal of the Faculty of Engineering & Architecture of Gazi University, 33(4).

          (https://dergipark.org.tr/tr/download/article-file/601784)

        161. 161
          Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst

          Figen, A. K., & Filiz, B. C. (2019). Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. Journal of colloid and interface science, 533, 82-94.

          (https://www.sciencedirect.com/science/article/pii/S0021979718309639)

        162. 162
          Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats

          Konyal?, R., & Deliormanl?, A. M. (2019). Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats. Journal of Thermoplastic Composite Materials, 32(5), 690-709.

          (https://journals.sagepub.com/doi/abs/10.1177/0892705718772889)

        163. 163
          Salinomycin-loaded Nanofibers for Glioblastoma Therapy

          Norouzi, M., Abdali, Z., Liu, S., & Miller, D. W. (2018). Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific reports, 8(1), 9377.

          (https://www.nature.com/articles/s41598-018-27733-2)

        164. 164
          Spunbond Dokusuz Tekstil Yu?zeyi U?zerine Elektro C?ekim Yo?ntemi ile Nano Boyutta Grafen Kaplanmas? ve Karakterizasyonu

          ALMA, M. H., YAZICI, M., YILDIRIM, B., & T?YEK, ?. (2017). Spunbond Dokusuz Tekstil Yüzeyi ?zerine Elektro ?ekim Y?ntemi ile Nano Boyutta Grafen Kaplanmas? ve Karakterizasyonu. Tekstil ve Mühendis, 24(108), 243-253.

          (https://dergipark.org.tr/tr/pub/teksmuh/issue/33861/374969)

        165. 165
          Superhydrophobic EVA copolymer fibers- the impact of chemical composition on wettability and photophysical properties

          Acik, G., Kamaci, M., & Cansoy, C. E. (2018). Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 296(11), 1759-1766.

          (https://link.springer.com/article/10.1007/s00396-018-4395-7)

        166. 166
          The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P(AN-VAc) nanofiber mats/PP spunbond

          Tiyek, ?., Yaz?c?, M., Alma, M. H., & Karata?, ?. (2019). The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P (AN-VAc) nanofiber mats/PP spunbond. Journal of Composite Materials, 53(11), 1541-1553.

          (https://journals.sagepub.com/doi/abs/10.1177/0021998318806973)

        167. 167
          The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility

          Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.

          (https://www.sciencedirect.com/science/article/pii/S0308814618308719)

        168. 168
          Thermal Conductivity of Electrospun Polyethylene Nanofibers

          Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

          (https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d/unauth#!divAbstract)

        169. 169
          Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application

          Li, W. (2018). Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application.

          (https://mspace.lib.umanitoba.ca/handle/1993/33473)

        170. 170
          Studium kinetiky funkcionalizace povrchu nanovla?ken po aktivaci plazmatem

          R??ek, V. (2018). Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem.

          (https://dspace.tul.cz/handle/15240/32257)

        171. 171
          Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules

          Ma?hemut?, A. (2018). Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules (Master’s thesis, Fen Bilimleri Enstitüsü).

          (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/4603)

        172. 172
          Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters

          Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 157, 19-31.

          (https://www.sciencedirect.com/science/article/pii/S0032386118309455)

        173. 173
          A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions

          Asadian, M., Grande, S., Onyshchenko, I., Morent, R., Declercq, H., & De Geyter, N. (2019). A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 481, 1554-1565.

          (https://www.sciencedirect.com/science/article/pii/S0169433219308554)

        174. 174
          Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly(ethylene succinate) for On-Demand Release of Biocides

          Abdali, Z., Logsetty, S., & Liu, S. (2019). Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly (ethylene succinate) for On-Demand Release of Biocides. ACS Omega, 4(2), 4063-4070.

          (https://pubs.acs.org/doi/abs/10.1021/acsomega.8b03137)

        175. 175
          Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes

          Chan, K. V., Asadian, M., Onyshchenko, I., Declercq, H., Morent, R., & De Geyter, N. (2019). Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 9(9), 1215.

          (https://www.mdpi.com/2079-4991/9/9/1215)

        176. 176
          Bioinspired scaffold induced regeneration of neural tissue

          Altun, E., Aydogdu, M. O., Togay, S. O., Sengil, A. Z., Ekren, N., Haskoylu, M. E., … & Ahmed, J. (2019). Bioinspired scaffold induced regeneration of neural tissue. European Polymer Journal, 114, 98-108.

          (https://www.sciencedirect.com/science/article/pii/S0014305718324765)

        177. 177
          Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture

          Türker, E., Yildiz, ?. H., & Yildiz, A. A. (2019). Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. International journal of biological macromolecules.

          (https://www.sciencedirect.com/science/article/pii/S0141813019350019)

        178. 178
          Development of TiO2 nanofibers based semiconducting humidity sensor- adsorption kinetics and DFT computations

          Farzaneh, A., Esrafili, M. D., & Mermer, ?. (2019). Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Materials Chemistry and Physics, 121981.

          (https://www.sciencedirect.com/science/article/pii/S0254058419307801)

        179. 179
          Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering

          Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering: C, 100, 735-746.

          (https://www.sciencedirect.com/science/article/pii/S0928493118326286)

        180. 180
          Dual effective core-shell electrospun scaffolds- Promoting osteoblast maturation and reducing bacteria activity

          De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., & Marciano, F. R. (2019). Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering: C, 103, 109778.

          (https://www.sciencedirect.com/science/article/pii/S0928493118309032)

        181. 181
          Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization

          Tort, S., Demir?z, F. T., Y?ld?z, S., & Acartürk, F. (2019). Effects of UV exposure time on nanofiber wound dressing properties during sterilization. Journal of Pharmaceutical Innovation, 1-8.

          (https://link.springer.com/article/10.1007/s12247-019-09383-7)

        182. 182
          Electron Microscopy Investigation of CeO2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation

          Liu, Z., Lu, Y., Li, J., Wang, Y., Wujcik, E. K., & Wang, R. (2019). Electron Microscopy Investigation of CeO 2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation. Microscopy and Microanalysis, 25(S2), 2176-2177.

          (https://doi.org/10.1017/S1431927619011619)

        183. 183
          Electrospinning and Electrospun Nanofibers- Methods, Materials, and Applications

          Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.

          (https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.8b00593)

        184. 184
          Electrospinning- The Setup and Procedure

          Long, Y. Z., Yan, X., Wang, X. X., Zhang, J., & Yu, M. (2019). Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications (pp. 21-52). William Andrew Publishing.

          (https://www.sciencedirect.com/science/article/pii/B9780323512701000029)

        185. 185
          Electrospray Deposition of Discrete Nanoparticles- Studies on Pulsed-Field Electrospray and Analytical Applications

          Kremer, M. H. (2019). Electrospray Deposition of Discrete Nanoparticles: Studies on Pulsed-Field Electrospray and Analytical Applications.

          (https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290g61r)

        186. 186
          Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds

          Ferna?ndez, J., Ruiz-Ruiz, M., & Sarasua, J. R. (2019). Electrospun Fibers of Polyester, with Both Nano-and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials.

          (https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00108)

        187. 187
          Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material

          Gurler, E. B., Ergul, N. M., Ozbek, B., Ekren, N., Oktar, F. N., Haskoylu, M. E., … & Temiz, A. F. (2019). Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Materials Science and Engineering: C, 100, 798-808.

          (https://www.sciencedirect.com/science/article/pii/S0928493118329187)

        188. 188
          Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4 /MWCNT ceramic composite

          Zagyva, T., Balázsi, K., & Balázsi, C. (2019). Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite. PROCESSING AND APPLICATION OF CERAMICS, 13(2), 132-138.

          (http://www.doiserbia.nb.rs/Article.aspx?ID=1820-61311902132Z#.XXKXgJMzbfY)

        189. 189
          Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

          Valtera, J., Kalous, T., Pokorny, P., Batka, O., Bilek, M., Chvojka, J., … & Beran, J. (2019). Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific reports, 9(1), 1801. (https://www.nature.com/articles/s41598-019-38557-z)

        190. 190
          Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries

          Kalybekkyzy, S., Mentbayeva, A., Kahraman, M. V., Zhang, Y., & Bakenov, Z. (2019). Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of The Electrochemical Society, 166(3), A5396-A5402. (http://jes.ecsdl.org/content/166/3/A5396.short)

        191. 191
          Hydrogen production from sodium borohydride originated compounds- Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity

          Filiz, B. C., & Figen, A. K. (2019). Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen Energy, 44(20), 9883-9895. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919306974)

        192. 192
          Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production

          Figen, A. K. (2019). Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production. International Journal of Hydrogen Energy. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919305610)

        193. 193
          Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for letal Tissue Regeneration

          Goonoo, N., Fahmi, A., Jonas, U., Gimié, F., Arsa, I. A., Bénard, S., … & Bhaw-Luximon, A. (2019). Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for letal Tissue Regeneration. ACS applied materials & interfaces, 11(6), 5834-5850. (https://pubs.acs.org/doi/abs/10.1021/acsami.8b19929)

        194. 194
          Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

          Gürsoy, M., ?zcan, F., & Karaman, M. (2019). Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. Journal of Applied Polymer Science, 136(31), 47768.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.47768)

        195. 195
          Kinetics and Isotherms Studies of the Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane

          Somera, L. R., Cuazon, R., Cruz, J. K., & Diaz, L. J. (2019, May). Kinetics and Isotherms Studies of the Adsorption of Hg (II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012005). IOP Publishing.

          (https://iopscience.iop.org/article/10.1088/1757-899X/540/1/012005/meta)

        196. 196
          Latest Progress in Electrospun Nanofibers for Wound Healing Applications

          Memic, A., Abudula, T., Mohammed, H. S., Joshi Navare, K., Colombani, T., & Bencherif, S. A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Applied Bio Materials, 2(3), 952-969.

          (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00637)

        197. 197
          Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection

          Singh, H., Li, W., Kazemian, M. R., Yang, R., Yang, C., Logsetty, S., & Liu, S. (2019). Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS Applied Bio Materials, 2(5), 2028-2036.

          (https://pubs.acs.org/doi/abs/10.1021/acsabm.9b00076)

        198. 198
          Needle-less Electrospinning

          Yan, G., Niu, H., & Lin, T. (2019). Needle-less Electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 219-247). William Andrew Publishing.

          (https://www.sciencedirect.com/science/article/pii/B9780323512701000078)

        199. 199
          Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings

          Sanchez-Rexach, E., Iturri, J., Fernandez, J., Meaurio, E., Toca-Herrera, J. L., & Sarasua, J. R. (2019). Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 9(42), 24154-24163.

          (https://pubs.rsc.org/en/content/articlelanding/ra/2019/c9ra04398e#!divAbstract)

        200. 200
          On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats

          Bal, B., Tugluca, I. B., Koc, N., & Isoglu, I. A. (2019). On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express, 6(6), 065411.

          (https://iopscience.iop.org/article/10.1088/2053-1591/ab0eaa/meta)

        201. 201
          Patent - US10197498B2 - Compositions and methods for measurement of analytes

          Ruckh, T. T., Balaconis, M. K., Clark, H. A., & Skipwith, C. (2019). U.S. Patent Application No. 10/197,498.

          (https://patents.google.com/patent/US10197498B2/en?oq=US10197498B2+)

        202. 202
          Patent - US10211449B2 - Battery electrode and method

          Ozkan, C. S., Ozkan, M., & Favors, Z. (2019). U.S. Patent Application No. 10/211,449. (https://patents.google.com/patent/US10211449B2/en)

        203. 203
          Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose

          Sezer, U. A., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., … & Sezer, S. (2019). Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Materials Science and Engineering: C, 99, 1141-1152.

          (https://www.sciencedirect.com/science/article/pii/S0928493118327024)

        204. 204
          Polypropylene microfibers via solution electrospinning under ambient conditions

          Acik, G., & Altinkok, C. (2019). Polypropylene microfibers via solution electrospinning under ambient conditions. Journal of Applied Polymer Science, 136(45), 48199.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48199)

        205. 205
          Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application

          Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., … & Gunduz, O. (2019). Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 1-11.

          (https://link.springer.com/article/10.1007/s41779-019-00363-1)

        206. 206
          Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO

          Basar, A. O., Sadhu, V., & Sasmazel, H. T. (2019). Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Biomedical Materials, 14(4), 045012.

          (https://iopscience.iop.org/article/10.1088/1748-605X/ab2035/meta)

        207. 207
          Proses parametreleri ve ??zelti ?zelliklerinin koaksiyal elektropüskürtme y?netemi ile elde edilen nanopartiküllerin morfolojik ?zellikleri üzerine etkisi

          Mete, A. A., & Atay, E. PROSES PARAMETRELER? VE ??ZELT? ?ZELL?KLER?N?N KOAKS?YAL ELEKTROP?SK?RTME Y?NTEM? ?LE ELDE ED?LEN NANOPART?K?LLER?N MORFOLOJ?K ?ZELL?KLER? ?ZER?NE ETK?S?. GIDA, 44(3), 534-551.

          (https://dergipark.org.tr/tr/pub/gida/article/531149)

        208. 208
          Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends

          Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 48294.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48294)

        209. 209
          Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior

          Ghobeira, R., Philips, C., Liefooghe, L., Verdonck, M., Asadian, M., Cools, P., … & Morent, R. (2019). Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 485, 204-221.

          (https://www.sciencedirect.com/science/article/pii/S0169433219311018)

        210. 210
          Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning

          Storti, E., Himcinschi, C., Kortus, J., & Aneziris, C. G. (2019). Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning. Journal of the European Ceramic Society.

          (https://www.sciencedirect.com/science/article/abs/pii/S0955221919305485)

        211. 211
          Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability

          I?ik, C., Arabaci, G., Do?a?, Y. I., Deveci, ?., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science and Engineering: C, 99, 1226-1235.

          (https://www.sciencedirect.com/science/article/pii/S0928493118309317)

        212. 212
          Synthesis and mechanical properties of para‐aramid nanofibers

          Trexler, M. M., Hoffman, C., Smith, D. A., Montalbano, T. J., Yeager, M. P., Trigg, D., … & Xia, Z. (2019). Synthesis and mechanical properties of para‐aramid nanofibers. Journal of Polymer Science Part B: Polymer Physics, 57(10), 563-573.

          (https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24810)

        213. 213
          Nerve guidance conduit application of magnesium alloys

          ?zkan, O. (2019). NERVE GUIDANCE CONDUIT APPLICATION OF MAGNESIUM ALLOYS.

          (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/6176)

        214. 214
          Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization- Physical, chemical and biological properties

          Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., … & De Geyter, N. (2019). Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 479, 942-952.

          (https://www.sciencedirect.com/science/article/pii/S0169433219305203)

        215. 215
          Electrospun nanofibers for biomedical applications
        216. 216
          Lamination of Separators to Electrodes using Electrospinning

          Springer Bernhard Christian, Frankenberger Martin, Pettinger Karl-Heinz. PLoS One; San Francisco Vol. 15, Iss. 1, (Jan 2020): e0227903. DOI:10.1371/journal.pone.0227903

          https://search.proquest.com/openview/a108579a31b0ed99b86e3d8f49ae9148/1?pq-origsite=gscholar&cbl=1436336

        217. 217
          Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment

          Claudia Heuera, Enrico Stortia, Thomas Graule, Christos G.Aneziris.

          EMPA, Eidgen?ssische Materialprüfungs- und Forschungsanstalt, Laboratory for High Performance Ceramics, ?berlandstr. 129, 8600, Dübendorf, Switzerland.

          https://www.sciencedirect.com/science/article/pii/S0272884220302601?via%3Dihub

        218. 218
          Measurement of impact characteristics in a string using electrospun PVDF nanofibers strain sensors

          Rahul KumarSingh, Sun WohLye, JianminMiao.

          School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

          https://www.sciencedirect.com/science/article/abs/pii/S0924424719317200?via%3Dihub

        219. 219
          Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone

          Silvia Grande, Francesco Tampieri, Anton Nikiforov, Agata Giardina, Antonio Barbon, Pieter Cools, Rino Morent, Cristina Paradisi, Ester Marotta and Nathalie De Geyter.
          Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium/Department of Chemical Sciences, Università degli Studi di Padova, Padua, Italy.

          https://www.frontiersin.org/articles/10.3389/fchem.2019.00344/full

        220. Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties

          Silvia Grande,Joachim Van Guyse, Anton Y. Nikiforov, Iuliia Onyshchenko, Mahtab Asadian, Rino Morent, Richard Hoogenboom and Nathalie De Geyte.

          https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48914

        221. Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities

          Tugba Eren Boncu, Nurten Ozdemir and Aylin Uskudar Guclu.

          https://www.tandfonline.com/doi/full/10.1080/03639045.2019.1706550

        222. Halochromic composite nanofibrous mat for wound healing monitoring
          Ayben Pakolpak??l, Bilgen Osman, Elif Tümay ?zer, Yasemin ?ahan, Beh?et Becerir, G?khan G?ktalay and Esra Karaca
          2020 IOP Publishing Ltd
          Materials Research Express, Volume 6, Number 12
        223. Synthesis and morphology optimization of electrospun SiBNC nanofibers
          Kamal Asadi-Pakdel, Rouhollah Mehdinavaz Aghdama, Mehdi Shahedi Asl and Mohammad Ali Faghihi Sani.



        <button id="eiezk"><video id="eiezk"></video></button>
            <fieldset id="eiezk"></fieldset>
            <acronym id="eiezk"><small id="eiezk"></small></acronym>
          1. <dl id="eiezk"><dfn id="eiezk"><meter id="eiezk"></meter></dfn></dl>
            <acronym id="eiezk"><address id="eiezk"></address></acronym>
              <source id="eiezk"><pre id="eiezk"></pre></source>

              强奸乱伦大杂烩,和欧美老外做爰,三及毛片 | 久久黄网站,国产福利一区视频,粗大黑人巨精大战欧美成人视频 | 我想看操逼视频,翁虹最裸三级未删减,国产日韩欧美高潮无码一区二区 | 婷婷开心深爱五月天播播,强壮公撩开我的裙子口述,欧美性受XXXX | 大香蕉伊人精品,日本护士肉体取精视频,91黄色操逼视频 | 久久婷婷五月国产色综合,一本无码一区二区三区,国产一级a毛一级a看免费视奥美 | 99热9,欧美男男gaygay免费网址,高清无码在线免费 | 精品三级视频,美女直播脱衣,一区二区三区人妻精品 | 操鸡巴网站,黄色视频一级,精品国产99 | HD国产人妖TS另类视频,羞羞影院男女午夜爽爽在线,男人天堂视频网站 |