<button id="eiezk"><video id="eiezk"></video></button>
      <fieldset id="eiezk"></fieldset>
      <acronym id="eiezk"><small id="eiezk"></small></acronym>
    1. <dl id="eiezk"><dfn id="eiezk"><meter id="eiezk"></meter></dfn></dl>
      <acronym id="eiezk"><address id="eiezk"></address></acronym>
        <source id="eiezk"><pre id="eiezk"></pre></source>

        一站式生物力學(xué)和生物3D打印解決方案供應(yīng)服務(wù)商

        培訓(xùn)●交流●學(xué)習(xí)之特色

        省錢(qián)、省力、省時(shí)、省事
        完免費(fèi)、無(wú)需舟車(chē)勞頓,無(wú)論何地、坐在家里或單位內(nèi)只要能上網(wǎng)即可與國(guó)際生物力學(xué)名家交流、體驗(yàn)

        一線生物力學(xué)專(zhuān)家同行匯聚
        推動(dòng)力學(xué)生物學(xué)的交流與合作

        隨時(shí)隨地學(xué)習(xí)、探討、交流
        學(xué)習(xí)、交流、探討生物生物學(xué)的科研現(xiàn)狀、趨勢(shì)、臨床發(fā)展路徑、科研實(shí)現(xiàn)工具和實(shí)現(xiàn)方法方案等

        • 世聯(lián)博研快訊
        • 展會(huì)與講座
        • 生物力學(xué)科研學(xué)習(xí)
        • 生物力學(xué)文獻(xiàn)大
        • 3D生物打印文獻(xiàn)
        • 客服中心
        • 承接細(xì)細(xì)胞力學(xué)和3D生物打印實(shí)驗(yàn)服務(wù)

          · 細(xì)胞牽張拉伸應(yīng)力加載刺激培養(yǎng)

          · 細(xì)胞組織壓力加載刺激培養(yǎng)

          · 三維水凝膠細(xì)胞組織牽張拉伸應(yīng)力加載刺激培養(yǎng)服務(wù)

          · 細(xì)胞牽流體剪切應(yīng)力加載刺激培養(yǎng)服務(wù)

          · 三維組織細(xì)胞灌流培養(yǎng)服務(wù)

          · 單細(xì)胞納米壓痕楊氏模量測(cè)試分析服務(wù)

          · 組織凝膠納米壓痕楊氏模量測(cè)試分析服務(wù)

          · CCII細(xì)胞損傷服務(wù)

          · Microduits微柱陣列細(xì)胞應(yīng)力分布測(cè)試服務(wù)

          · 三維血管、軟骨、骨組織、心臟瓣膜、皮膚應(yīng)力加載培養(yǎng)服務(wù)

          · 單細(xì)胞應(yīng)力加載、形變測(cè)量與力特性分析系統(tǒng)

          · regenhu細(xì)胞友好型3D生物打印服務(wù)

          · 靜水壓力刺激細(xì)胞組織培養(yǎng)

          · regenhu細(xì)胞友好型3D生物打印服務(wù)。

          定制生物力學(xué)實(shí)驗(yàn)裝置

          · 承接細(xì)細(xì)胞力學(xué)和3D生物打印實(shí)驗(yàn)服務(wù)

          誠(chéng)招各區(qū)經(jīng)銷(xiāo)合作商

          · 承接細(xì)細(xì)胞力學(xué)和3D生物打印實(shí)驗(yàn)服務(wù)

        • 2018年4月18-20日(北京●手都醫(yī)科大學(xué))五屆生物力學(xué)學(xué)術(shù)研討會(huì)

          細(xì)胞生物力學(xué)學(xué)術(shù)研討會(huì)將于2018年4月18日至4月20日在中國(guó)北京手都醫(yī)科大學(xué)學(xué)術(shù)交流中心舉辦。本次研討會(huì)由手都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院、臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室主辦,由世聯(lián)博研(北京)科技有限公司承辦。

          一、會(huì)議主要議題
          生物力學(xué)與力學(xué)生物學(xué)技術(shù)交流;細(xì)胞組織應(yīng)力(拉力、壓力、流體剪切力)培養(yǎng)、細(xì)胞組織機(jī)械特性測(cè)試分析、細(xì)胞組織自主伸縮力及剛度硬細(xì)胞組織
          三維灌注培養(yǎng)、技術(shù)交流等。

          二、參會(huì)人員
          從事細(xì)胞力學(xué)和力學(xué)生物學(xué)領(lǐng)域的專(zhuān)家和研究人員

          三、會(huì)務(wù)費(fèi)
          會(huì)議統(tǒng)一安排食宿,不收會(huì)務(wù)費(fèi)。

          四、會(huì)務(wù)聯(lián)系人
          世聯(lián)博研(北京)科技有限公司:
          王雪娥010-67529703,18210996806,18618101725,13466675923
          手都醫(yī)科大學(xué)臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室:
          王輝010-83911848

          會(huì)議詳情


        • 纖維絲張力和扭力測(cè)

          自動(dòng)法向壓痕和厚度映射

          脛骨三維輪廓測(cè)試

          機(jī)電活性材料(如結(jié)締組織、帶電水凝膠等)壓縮過(guò)程中電位分布
        • 1、應(yīng)力刺激培養(yǎng)部分

          美國(guó)flexcell國(guó)際公司注于細(xì)胞、組織力學(xué)培養(yǎng)產(chǎn)品的設(shè)計(jì)和制造30年余年。以提供te的體外細(xì)胞拉應(yīng)力、壓應(yīng)力和流體剪切應(yīng)力加載刺激系統(tǒng)以及配套的培養(yǎng)板、硅膠膜載片等耗材聞名于世,其應(yīng)用文獻(xiàn)達(dá)數(shù)千篇,以整理如下供應(yīng)大家參考,如需要詳細(xì)資料,請(qǐng)致電:010-67529703
          2019年前flexcell細(xì)胞、組織牽張、壓縮、流體剪切力刺激培養(yǎng)文獻(xiàn)目錄下載
          2019年flexcell細(xì)胞、組織牽張、壓縮、流體剪切力刺激培養(yǎng)文獻(xiàn)目錄下載

          2、力學(xué)特性測(cè)試分析部分

          加拿大 多功能組織材料生物力學(xué)特性、電位分布測(cè)試分析表征系統(tǒng)及文獻(xiàn)目錄,大家參考,如需要詳細(xì)資料,請(qǐng)致電:010-67529703

          該系統(tǒng)是能集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)和2D/3D壓痕、3D輪廓及多力混合耦連測(cè)試的一體化微觀力學(xué)測(cè)試裝置。能對(duì)生物組織、聚合物、凝膠、生物材料、膠囊、粘合劑和食品進(jìn)行精密可靠的機(jī)械刺激和表征。允許表征的機(jī)械性能包括剛度、度、模量、粘彈性、塑性、硬度、附著力、腫脹和松弛位移控制運(yùn)動(dòng)。

          特點(diǎn)

          1、適用樣品范圍廣:

          1、適用樣品范圍廣:

          1.1、從骨等硬組織材料到腦組織、眼角膜等軟組織材料

          1.2、從粗椎間盤(pán)的樣品到細(xì)纖維絲

          2、通高量壓痕測(cè)試分析

          ◆無(wú)需表面平坦,可在不規(guī)則表面壓痕
          ◆壓痕同時(shí)可測(cè)量厚度信息
          ◆壓痕不要求壓縮軸垂直于樣品表面對(duì)齊
          ◆紅寶石壓頭,堅(jiān)固不易斷
          ◆樣品不需要從組織中收集
          ◆組織的破壞小
          ◆維持被測(cè)材料的機(jī)械環(huán)境及其與周?chē)牧系南嗷プ饔?br> ◆測(cè)試多個(gè)站點(diǎn)mapping

          2.1、三維法向壓痕映射非平面樣品整個(gè)表面的力學(xué)特性

          2.2、48孔板中壓痕測(cè)試分析

          3、力學(xué)類(lèi)型測(cè)試分析功能齊

          模塊化集成壓縮、張力、剪切、摩擦、扭轉(zhuǎn)、穿刺、摩擦和2D/3D壓痕、3D表面輪廓、3D厚度等各種力學(xué)類(lèi)型支持,微觀結(jié)構(gòu)表征及動(dòng)態(tài)力學(xué)分析研究

          4、高分辨率:

          4.1、位移分辨率達(dá)0.1um

          4.2、力分辨率 達(dá)0.025mN

          5、 行程范圍廣:50-250mm

          6、體積小巧、可放入培養(yǎng)箱內(nèi)

          7 、高變分辨率成像跟蹤分析

          8、多軸向、多力偶聯(lián)刺激

          9、活性組織電位分布測(cè)試分析

          10、產(chǎn)品成熟,文獻(xiàn)量達(dá) 上千篇


          多功能微觀生物力學(xué)測(cè)試及電特性測(cè)量系統(tǒng)文獻(xiàn)目錄下載

          3、單細(xì)胞應(yīng)力加載部分

          系統(tǒng)及文獻(xiàn)目錄,大家參考,如需要詳細(xì)資料,請(qǐng)致電:010-67529703

          單細(xì)胞應(yīng)力刺激培養(yǎng)系統(tǒng)


          細(xì)胞被均勻地限制/壓縮在兩個(gè)亞微米分辨率的兩個(gè)平行表面之間。不同的限制高度(例如1um – 300um),允許長(zhǎng)期細(xì)胞培養(yǎng)和細(xì)胞增殖,同時(shí)保持對(duì)封閉的控制
          與高分辨率光學(xué)顯微鏡系統(tǒng)兼容,可以處理足夠多的細(xì)胞以進(jìn)行完整的基因表達(dá)分析,可與生物功能化的微結(jié)構(gòu)化底物和/或不同的基質(zhì)(幾何形狀控制)結(jié)合使用
          可以與凝膠結(jié)合(硬度控制),兼容任何細(xì)胞培養(yǎng)底物(培養(yǎng)皿至96孔板)


          產(chǎn)品:



          應(yīng)用:

          Cell migration 2.5D, migration and interaction of non-adhesive cells, cell squeezing, imaging of flat cells (organelles aligned in 2D), super-resolution video-microscopy (organelles move less), contractility assay, etc
          Confinement illustration
          HeLa cells: not confined, 5 ?m, 3 ?m.
          Explore examples of applications

          > Cancer invasiveness assay: Quantification of migration behaviors and migration transitions
          > Cancer aggressiveness assay: Quantification of contractility of somatic or cancer cells
          > Endocytosis assay: Improved observation of events taking place at the membrane
          > Exocytosis assay: Improved observation of events taking place at the apical membrane
          > Frustrated phagocytosis: Characterization of the mechanism
          > Immune system in a well: 2D migration and interaction of non-adherent immune cells
          > Immune cells interaction: 2D interaction of non-adherent immune cells
          > Mitotic assembly assay: Quantification of mitotic spindle disorders
          > Quantitative cell migration assay: Fast and fine analysis of cell migration properties
          文獻(xiàn):PUBLICATIONS



          Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells
          Y.-J. Liu, M. Piel, Cell, et al., 2015 160(4), 659-672
          Actin flows induce a universal coupling between cell speed and cell persistence
          P. Maiuri, R. Voituriez, et al., Cell, 2015 161(2), 374–386
          Geometric friction directs cell migration
          M. Le Berre, M. Piel, et al., Physical Review Letter 2013 111, 198101
          Mitotic rounding alters cell geometry to ensure efficient spindle assembly
          O. M. Lancaster, B. Baum, et al., Developmental Cell, 2013 25(3), 270-283
          Fine Control of Nuclear Confinement Identifies a Threshold Deformation leading to Lamina Rupture and Induction of Specific Genes
          M. Le Berre, J. Aubertin, M. Piel, Integrative Biology, 2012 4 (11), 1406-1414
          Exploring the Function of Cell Shape and Size during Mitosis
          C. Cadart, H. K. Matthews, et al., Developmental Cell, 2014 29(2), 159-169
          Methods for Two-Dimensional Cell Confinement
          M. Le Berre, M. Piel, et al., 2014, Micropatterning in Cell Biology Part C, Methods in cell biology, 121, 213-29

          單細(xì)胞應(yīng)力加載部分系統(tǒng)文獻(xiàn)目錄下載


          4、細(xì)胞牽引力顯微鏡加載部分

          系統(tǒng)及文獻(xiàn)目錄,大家參考,如需要詳細(xì)資料,請(qǐng)致電:010-67529703

          銷(xiāo)售和可定制歐美進(jìn)口細(xì)胞牽引力顯微鏡和微柱

          承接定制細(xì)胞微圖案、微溝槽培養(yǎng)檢測(cè)科研裝置、微柱陣列、微針加工制作

          銷(xiāo)售培訓(xùn)微圖案、微溝槽培養(yǎng)檢測(cè)科研裝置、微柱陣列、微針加工制作設(shè)備、提供技術(shù)培訓(xùn)

          歐美進(jìn)口設(shè)備和技術(shù)保證!


          微柱培養(yǎng)陣列及其特點(diǎn):


          ●每張陣列尺寸為3.2 x 3.2 mm,含10 x 18個(gè)觀測(cè)點(diǎn),每個(gè)觀測(cè)點(diǎn)有170個(gè)按六邊形排列的微柱

          ●微柱直徑5 μm,高15 μm,中心間距為12 μm

          ●微柱彈力范圍1-3 nN(有其他需求可定制)

          ●標(biāo)準(zhǔn)涂層是纖維連接蛋白或膠原蛋白I

          ●細(xì)胞外基質(zhì)(EDM)蛋白包可按找需求定制


          軟件可用于從光學(xué)顯微鏡拍攝的細(xì)胞圖片中提取細(xì)胞力學(xué)參數(shù)(力/微柱、微柱坐標(biāo)、微柱形變、細(xì)胞的應(yīng)變和應(yīng)力分布等)(圖3)。分析結(jié)果可保存為Excel表格,便于后續(xù)處理。

          圖3

          測(cè)量原理:

          未變形的微柱在明場(chǎng)圖片中呈較亮的圓形,周?chē)禽^暗的邊,通過(guò)霍夫變換可得到其形心。發(fā)生變形的微柱呈較暗的半月形,通過(guò)圖像處理可得到微柱的形變大?。▓D1)。由于微柱剛度已知,所以進(jìn)而可得到每根微柱產(chǎn)生的力。

          系統(tǒng)組成:

          1、熒光倒置顯微鏡:

          主要用于常規(guī)活細(xì)胞成像,快速高靈敏度活細(xì)胞熒光成像,主要包括顯微平臺(tái),成像系統(tǒng),工作站

          2、微柱陣列培養(yǎng)設(shè)備:


          將硅膠微柱陣列刻在蓋玻片上(圖1 A),并包被蛋白,然后置于培養(yǎng)皿中(圖1 B)。微柱上需要包被蛋白。標(biāo)準(zhǔn)的包被蛋白有纖連蛋白或I型膠原。若需其他包被蛋白,需提前告知。每張微柱陣列可以分析120-150個(gè)細(xì)胞,得到的數(shù)據(jù)足以進(jìn)行統(tǒng)計(jì)學(xué)分析。每種實(shí)驗(yàn)條件可進(jìn)行2-3次實(shí)驗(yàn),這樣得到的結(jié)果會(huì)更加穩(wěn)定。微柱陣列本身并未進(jìn)行包被,在使用前需要自行包被合適的蛋白(用戶自選,可購(gòu)常用的包被蛋白)。

          3、光學(xué)減震臺(tái)

          4、預(yù)裝MicroPost細(xì)胞牽引力、內(nèi)源力分析軟件的計(jì)算機(jī)系統(tǒng):

          軟件可用于從光學(xué)顯微鏡拍攝的細(xì)胞圖片中提取細(xì)胞力學(xué)參數(shù):(力/微柱、微柱坐標(biāo)、微柱形變、細(xì)胞的應(yīng)變和應(yīng)力分布等);

          做細(xì)胞如下力學(xué)特性分析,包括:

          1)、微柱形變;

          2)、細(xì)胞的應(yīng)變和應(yīng)力分布

          3)、細(xì)胞牽引力、內(nèi)源力(cell active force)

          4)、主動(dòng)收縮力

          細(xì)胞牽引力顯微鏡加載部分系統(tǒng)文獻(xiàn)目錄下載


          5、高通量細(xì)胞力學(xué)特性測(cè)試分析部分

          系統(tǒng)及文獻(xiàn)目錄,大家參考,如需要詳細(xì)資料,請(qǐng)致電:010-67529703

          自德國(guó)的高通量單細(xì)胞形變測(cè)量分析系統(tǒng)


          該系統(tǒng)是一套基于微流控流體壓力梯度的、在倒置顯微鏡的擴(kuò)展起來(lái)的、集成流式細(xì)胞儀特性、熒光檢測(cè)模塊、溫控模 塊、高速成像和數(shù)據(jù)采集分析軟件的高通量單細(xì)胞實(shí)時(shí)形變測(cè)量和單細(xì)胞力學(xué)性質(zhì)分析系統(tǒng)。
          是一種以流式細(xì)胞儀的速度檢測(cè)單個(gè)細(xì)胞形態(tài)和力學(xué)性質(zhì)的技術(shù)!
          細(xì)胞被泵送通過(guò)微流控芯片。 每個(gè)細(xì)胞都被實(shí)時(shí)拍攝、分析和成像存儲(chǔ)。 此外,非破壞性的力量應(yīng)用于細(xì)胞,提供一種方便,穩(wěn)健和高通量的技術(shù)進(jìn)行生物標(biāo)志物的檢測(cè),可用于基礎(chǔ)科學(xué)和臨床研究。

          探索細(xì)胞的物理特性作為生物標(biāo)志物,可以將非破壞性的力量應(yīng)用于細(xì)胞或珠子,并觀察它們的變形。 這允許研究對(duì)物理壓力的te定機(jī)械響應(yīng)。

          you勢(shì)亮點(diǎn):

          機(jī)械力學(xué)作為一種新的生物標(biāo)志物--溫和無(wú)損傷
          無(wú)標(biāo)記
          非破壞性的力量
          高速測(cè)量單個(gè)細(xì)胞的形變、亮度、楊氏模量等
          細(xì)胞機(jī)械特性測(cè)量高通量(1000細(xì)胞/秒)
          配有高速成像、熒光檢測(cè)、溫控模塊
          不需要細(xì)胞分離/純化
          文獻(xiàn)量大、級(jí)別高文章達(dá)數(shù)十篇

          成像

          每個(gè)細(xì)胞被同時(shí)拍照、分析和儲(chǔ)存。 這允許通過(guò)它們的光學(xué)特性來(lái)找到小亞群或區(qū)分細(xì)胞。 另外可以研究像表面拓?fù)浠蚣?xì)胞對(duì)光的衰減的形態(tài)特性。

          每個(gè)獲取圖像的存儲(chǔ)
          快速訪問(wèn)細(xì)胞大小和形態(tài)

          該高速流式細(xì)胞形變機(jī)械力學(xué)測(cè)量系統(tǒng)是一種以細(xì)胞計(jì)數(shù)器的速度檢測(cè)單細(xì)胞形態(tài)和流變性質(zhì)的技術(shù)! 細(xì)胞被泵送通過(guò)微流控芯片。 每個(gè)細(xì)胞都被實(shí)時(shí)拍攝、分析和成像存儲(chǔ)。 此外,非破壞性的力量應(yīng)用于細(xì)胞,提供一種方便,穩(wěn)健和高通量的技術(shù)進(jìn)行生物標(biāo)志物的檢測(cè),可用于基礎(chǔ)科學(xué)和臨床研究。

          流式細(xì)胞技術(shù)

          流式單細(xì)胞力學(xué)特性測(cè)試分析系統(tǒng)

          細(xì)胞通過(guò)微流通道時(shí),提取細(xì)胞變形、亮度和大小等參數(shù),同時(shí)。 這允許實(shí)時(shí)地研究細(xì)胞屬性。

          可溫控和熒光檢測(cè)

          實(shí)時(shí)變形細(xì)胞計(jì)數(shù)和同時(shí)熒光檢測(cè):
          熒光模塊使得該系統(tǒng)不再只是附加了一個(gè)額外的細(xì)胞力學(xué)檢測(cè)通道的流式細(xì)胞儀。它成為了生命科學(xué)實(shí)驗(yàn)室的得力工具 - 提供了更多視角來(lái)解決科學(xué)問(wèn)題。在生物學(xué)研究中通常使用熒光流式細(xì)胞儀來(lái)鑒定和定量細(xì)胞和細(xì)胞過(guò)程。使該系統(tǒng)集熒光流式細(xì)胞儀和實(shí)時(shí)變形的you點(diǎn)于一身,形成了實(shí)時(shí)熒光形變細(xì)胞儀。光片激發(fā)設(shè)計(jì)可實(shí)現(xiàn)三通道1D熒光成像。除了ALL實(shí)時(shí)變形參數(shù)外,系統(tǒng)還會(huì)分析熒光信號(hào)實(shí)時(shí)得到峰圖,速度可達(dá)每秒1000個(gè)細(xì)胞。也可在實(shí)驗(yàn)后處理保存的原始熒光數(shù)據(jù),以針對(duì)te定的問(wèn)題和需 求修改處理方法。
          1)根據(jù)表面marker鑒定血細(xì)胞:
          熒光模塊可檢測(cè)和鑒定同一樣品中的三種不同熒光。利用標(biāo)記的表面熒光蛋白可同時(shí)實(shí)現(xiàn)細(xì)胞鑒定和力學(xué)性質(zhì)及形態(tài)性質(zhì)測(cè)量。 下圖為 G-CSF動(dòng)員的外周血樣品細(xì)胞群體。 標(biāo)記后的細(xì)胞表面markers CD3-FITC (T-cells), CD34-PE (造血干細(xì)胞)和CD14-APC(單核細(xì)胞)熒光度檢測(cè) 揭示了各細(xì)胞類(lèi)型所具有的不同力學(xué)性質(zhì)。
          2)一維熒光成像:
          熒光模塊在激發(fā)光路徑中產(chǎn)生一束受限光片,穿過(guò)流道,細(xì)胞會(huì)經(jīng)過(guò)一束很窄的激發(fā)光幕。這樣可以進(jìn)行1D熒光成像,例如可用于解析沿流動(dòng)方向的熒光標(biāo)記結(jié)構(gòu)的側(cè)向分布。檢測(cè)到的熒光峰值帶有很多重要信息。熒光標(biāo)記的胞內(nèi)結(jié)構(gòu)(如細(xì)胞核)會(huì)顯示窄峰,而胞質(zhì)會(huì)顯示出更寬的峰。不同分裂期細(xì)胞中標(biāo)記的組蛋白也會(huì)呈現(xiàn)出不同的峰圖.
          加熱模塊 - 溫度控制

          加熱模塊實(shí)現(xiàn)了生理溫度下的測(cè)量。加熱模塊帶有一個(gè)300 W的加熱器和幾個(gè)靜默通風(fēng)機(jī)來(lái)有效混合熱空氣??拷鼧悠诽幱幸粋€(gè)傳感器和一個(gè)控制單元,用以j確地將溫度控制在所需值。系統(tǒng)的空氣循環(huán)系統(tǒng)非常高效,當(dāng)進(jìn)行開(kāi)放操作(如更換樣品)后可以迅速恢復(fù)溫度。
          高速攝像
          該成像模塊是款高速明場(chǎng)攝像顯微鏡,使用同步化微秒高度LED光源減輕運(yùn)動(dòng)模糊,可進(jìn)行慢運(yùn)動(dòng)攝影.每秒可記錄500幅幀圖像或10000幀小區(qū)域圖像

          典型應(yīng)用:

          1)檢測(cè)細(xì)胞骨架改變:
          通過(guò)力學(xué)分析可量化細(xì)胞骨架的變化。使用松胞素D抑制微絲會(huì)導(dǎo)致較大的形變,降低HL60細(xì)胞的剛度。有些細(xì)胞可通過(guò)亮度和大小等圖像性質(zhì)區(qū)分。這就可對(duì)血樣本中的紅細(xì)胞、血小板甚至白細(xì)胞亞群進(jìn)行鑒定和進(jìn)一步研究,無(wú)需進(jìn)行標(biāo)記和純化。
          2)研究既往條件效應(yīng)
          以前研究,通常使用跨膜蛋白CD34來(lái)鑒定原代人外周造血干細(xì)胞(HSCs)。下圖比較了從骨髓得到的CD34+ 細(xì)胞和粒細(xì)胞集落刺激因子(G-CSF)動(dòng)員的外周血CD34+細(xì)胞,結(jié)果發(fā)現(xiàn)外周血HSCs比骨髓HSCs更硬。
          3)解析中性粒細(xì)胞激活動(dòng)力學(xué)
          高測(cè)量速度和快速樣品制備的特點(diǎn)使得觀察動(dòng)力學(xué)過(guò)程成為可能。下圖為中性粒細(xì)胞暴露于fMLP后力學(xué)性質(zhì)的改變。一些細(xì)菌會(huì)釋放fMLP三肽,是一種感染信號(hào),會(huì)激活免疫系統(tǒng)細(xì)胞。
          3)解析中性粒細(xì)胞激活動(dòng)力學(xué)

          高通量細(xì)胞力學(xué)特性測(cè)試系統(tǒng)文獻(xiàn)目錄下載
        •         世聯(lián)博研專(zhuān)注生物力學(xué)和生物打印科研服務(wù),10年經(jīng)驗(yàn)支持。提供3D生物打印機(jī)銷(xiāo)售、租賃和3D生物打印科研實(shí)驗(yàn)委托服務(wù)。世聯(lián)博研作為生物打印合作伙伴,為您提供解決方案——我們擁有專(zhuān)門(mén)的生物3D打印服務(wù)中心,配備多臺(tái)球的生物3D打印機(jī),設(shè)備來(lái)自瑞士regenHU,美國(guó)ALLEVI。我們擁有一支由博士和碩士組成專(zhuān)業(yè)的技術(shù)團(tuán)隊(duì),公司在北京、廣州、上海、成都、合肥、西安、蘇州、哈爾濱、設(shè)立3D打印展示中心,為國(guó)廣大客戶提供現(xiàn)場(chǎng)觀摩和打印服務(wù)。我們專(zhuān)注您的業(yè)務(wù),將您的想法帶入現(xiàn)實(shí),我們幫您提供適合您行業(yè)的3D打印解決方案。
          regenhu 3d生物打印機(jī)應(yīng)用文獻(xiàn) ,其應(yīng)用文獻(xiàn)達(dá)數(shù)千篇,以整理如下供應(yīng)大家參考,如需要詳細(xì)資料,請(qǐng)致電:010-67529703
          Author Title Year Journal/Proceedings Reftype DOI/URL
          Daskalakis, E., Aslan, E., Liu, F., Cooper, G., Weightman, A., Ko?, B., Blunn, G. and Bartolo, P.J. Composite Scaffolds for Large Bone Defects

          [Abstract] [BibTeX]

          2020 Progress in Digital and Physical Manufacturing, pp. 250-257 inproceedings
          Bertana, V., Catania, F., Cocuzza, M., Ferrero, S., Scaltrito, L. and Pirri, C. Medical and biomedical applications of 3D and 4D printed polymer nanocomposites

          [Abstract] [BibTeX]

          2020 3D and 4D Printing of Polymer Nanocomposite Materials, pp. 325 - 366 incollection DOIURL
          Freeman, FE, Browe, DC, Nulty, J, Von Euw, S, Grayson, WL and Kelly, DJ Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering.

          [Abstract] [BibTeX]

          2019 European Cells & Materials article DOIURL
          Loai, S., Kingston, B.R., Wang, Z., Philpott, D.N., Tao, M. and Cheng, H.-L.M. Clinical Perspectives on 3D Bioprinting Paradigms for Regenerative Medicine

          [BibTeX]

          2019 Regen Med Front.
          Vol. 1(e190004), pp. e190004
          article DOIURL
          Geetha Bai, R., Muthoosamy, K., Manickam, S. and Hilal-Alnaqbi, A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering

          [Abstract] [BibTeX]

          2019 International journal of nanomedicine
          Vol. 14(31413573), pp. 5753-5783
          article URL
          Zhuang, P., Ng, W.L., An, J., Chua, C.K. and Tan, L.P. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications

          [Abstract] [BibTeX]

          2019 PLOS ONE
          Vol. 14(6), pp. 1-21
          article DOI
          Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L. and Dvir, T. 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts

          [Abstract] [BibTeX]

          2019 Advanced Science
          Vol. 0(0), pp. 1900344
          article DOI
          Markstedt, K., H?kansson, K., Toriz, G. and Gatenholm, P. Materials from trees assembled by 3D printing – Wood tissue beyond nature limits

          [Abstract] [BibTeX]

          2019 Applied Materials Today
          Vol. 15, pp. 280 - 285
          article DOIURL
          Huang, B., Vyas, C., Roberts, I., Poutrel, Q.-A., Chiang, W.-H., Blaker, J.J., Huang, Z. and Bártolo, P. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration

          [Abstract] [BibTeX]

          2019 Materials Science and Engineering: C
          Vol. 98, pp. 266 - 278
          article DOIURL
          Gonzalez-Fernandez, T., Rathan, S., Hobbs, C., Pitacco, P., Freeman, F., Cunniffe, G., Dunne, N., McCarthy, H., Nicolosi, V., O'Brien, F. and Kelly, D. Pore-forming bioinks to enable Spatio-temporally defined gene delivery in bioprinted tissues

          [Abstract] [BibTeX]

          2019 Journal of Controlled Release article DOIURL
          Gloria, A., Frydman, B., Lamas, M.L., Serra, A.C., Martorelli, M., Coelho, J.F., Fonseca, A.C. and Domingos, M. The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(ε-caprolactone) scaffolds

          [Abstract] [BibTeX]

          2019 Materials Science and Engineering: C
          Vol. 98, pp. 994 - 1004
          article DOIURL
          Apelgren, P., Karabulut, E., Amoroso, M., Mantas, A., Martínez ávila, H., K?lby, L., Kondo, T., Toriz, G. and Gatenholm, P. In Vivo Human Cartilage Formation in Three-Dimensional Bioprinted Constructs with a Novel Bacterial Nanocellulose Bioink

          [Abstract] [BibTeX]

          2019 ACS Biomater. Sci. Eng.
          Vol. 5(5), pp. 2482-2490
          article DOI
          Mehrotra, S., Moses, J.C., Bandyopadhyay, A. and Mandal, B.B. 3D Printing/Bioprinting Based Tailoring of in Vitro Tissue Models: Recent Advances and Challenges

          [Abstract] [BibTeX]

          2019 ACS Appl. Bio Mater.
          Vol. 2(4), pp. 1385-1405
          article DOI
          Allig, S., Mayer, M., Arrizabalaga, O., Ritter, S., Schroeder, I. and Thielemann, C. Effect of extrusion-based bioprinting on neurospheres

          [BibTeX]

          2019 GSI-FAIR SCIENTIFIC REPORT 2017School: University of Applied Sciences, BioMEMS Lab, Aschaffenburg, Germany techreport URL
          Marques, C.F., Diogo, G.S., Pina, S., Oliveira, J.M., Silva, T.H. and Reis, R.L. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review

          [Abstract] [BibTeX]

          2019 Journal of Materials Science: Materials in Medicine
          Vol. 30(3), pp. 32
          article DOI
          Zhou, M., Lee, B.H., Tan, Y.J. and Tan, L.P. Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing

          [Abstract] [BibTeX]

          2019 Biofabrication
          Vol. 11(2), pp. 025011
          article DOI
          Rotbaum, Y., Puiu, C., Rittel, D. and Domingos, M. Quasi-static and dynamic in vitro mechanical response of 3D printed scaffolds with tailored pore size and architectures

          [Abstract] [BibTeX]

          2019 Materials Science and Engineering: C
          Vol. 96, pp. 176 - 182
          article DOIURL
          Pedrotty, D.M., Volodymyr, K., Erdem, K., Sugrue Alan, M., Christopher, L., Vaidya Vaibhav, R., McLeod Christopher, J., Asirvatham Samuel, J., Paul, G. and Suraj, K. Three-Dimensional Printed Biopatches With Conductive Ink Facilitate Cardiac Conduction When Applied to Disrupted Myocardium

          [BibTeX]

          2019 Circulation: Arrhythmia and Electrophysiology
          Vol. 12(3), pp. e006920
          article DOI
          Jiang, T., Munguía López, J., Flores-Torres, S., Kort-Mascort, J. and Kinsella, J. Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication

          [BibTeX]

          2019 Applied Physics Reviews
          Vol. 6, pp. 011310
          article DOI
          Filardo, G., Petretta, M., Cavallo, C., Roseti, L., Durante, S., Albisinni, U. and Grigolo, B. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold

          [Abstract] [BibTeX]

          2019 Bone & Joint Research
          Vol. 8(2), pp. 101-106
          article DOI
          Athanasiadis, M., Pak, A., Afanasenkau, D. and Minev, I.R. Direct Writing of Elastic Fibers with Optical, Electrical, and Microfluidic Functionality

          [Abstract] [BibTeX]

          2019 Advanced Materials Technologies
          Vol. 0(0), pp. 1800659
          article DOI
          Sharma, A., Desando, G., Petretta, M., Chawla, S., Bartolotti, I., Manferdini, C., Paolella, F., Gabusi, E., Trucco, D., Ghosh, S. and Lisignoli, G. Investigating the Role of Sustained Calcium Release in Silk-Gelatin-Based Three-Dimensional Bioprinted Constructs for Enhancing the Osteogenic Differentiation of Human Bone Marrow Derived Mesenchymal Stromal Cells

          [BibTeX]

          2019 ACS Biomater. Sci. Eng. article DOI
          Pan, H.M., Chen, S., Jang, T.-S., Han, W.T., Jung, H.-d., Li, Y. and Song, J. Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication

          [Abstract] [BibTeX]

          2019 Biofabrication
          Vol. 11(2), pp. 025008
          article DOI
          Dooley, M., Prasopthum, A., Liao, Z., Sinjab, F., McLaren, J., Rose, F.R.A.J., Yang, J. and Notingher, I. Spatially-offset Raman spectroscopy for monitoring mineralization of bone tissue engineering scaffolds: feasibility study based on phantom samples

          [Abstract] [BibTeX]

          2019 Biomed. Opt. Express
          Vol. 10(4), pp. 1678-1690
          article DOIURL
          Zhang, D., Peng, E., Borayek, R. and Ding, J. Controllable Ceramic Green-Body Configuration for Complex Ceramic Architectures with Fine Features

          [Abstract] [BibTeX]

          2019 Advanced Functional Materials
          Vol. 0(0), pp. 1807082
          article DOI
          Rathan, S., Dejob, L., Schipani, R., Haffner, B., M?bius, M.E. and Kelly, D.J. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering

          [Abstract] [BibTeX]

          2019 Advanced Healthcare Materials
          Vol. 0(0), pp. 1801501
          article DOI
          Alison, L., Menasce, S., Bouville, F., Tervoort, E., Mattich, I., Ofner, A. and Studart, A.R. 3D printing of sacrificial templates into hierarchical porous materials

          [Abstract] [BibTeX]

          2019 Scientific Reports
          Vol. 9(1), pp. 409
          article DOI
          Yilmaz, B, Tahmasebifar, A and Baran, ET Bioprinting Technologies in Tissue Engineering

          [BibTeX]

          2019 Adv Biochem Eng Biotechnol article DOI
          Xu, Y., Peng, J., Richards, G., Lu, S. and Eglin, D. Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering

          [Abstract] [BibTeX]

          2019 Journal of Orthopaedic Translation
          Vol. 18, pp. 128 - 141
          article DOIURL
          Wang, W., Junior, J.R.P., Nalesso, P.R.L., Musson, D., Cornish, J., Mendon?a, F., Caetano, G.F. and Bártolo, P. Engineered 3D printed poly(?-caprolactone)/graphene scaffolds for bone tissue engineering

          [Abstract] [BibTeX]

          2019 Materials Science and Engineering: C
          Vol. 100, pp. 759 - 770
          article DOIURL
          Wang, W., Huang, B., Byun, J.J. and Bártolo, P. Assessment of PCL/carbon material scaffolds for bone regeneration

          [Abstract] [BibTeX]

          2019 Journal of the Mechanical Behavior of Biomedical Materials
          Vol. 93, pp. 52 - 60
          article DOIURL
          Valot, L., Martinez, J., Mehdi, A. and Subra, G. Chemical insights into bioinks for 3D printing

          [Abstract] [BibTeX]

          2019 Chem. Soc. Rev.
          Vol. 48, pp. 4049-4086
          article DOI
          Tondera, C., Akbar, T.F., Thomas, A.K., Lin, W., Werner, C., Busskamp, V., Zhang, Y. and Minev, I.R. Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping

          [Abstract] [BibTeX]

          2019 Small
          Vol. 0(0), pp. 1901406
          article DOI
          Shen, J., Wang, W., Zhai, X., Chen, B., Qiao, W., Li, W., Li, P., Zhao, Y., Meng, Y., Qian, S., Liu, X., Chu, P.K. and Yeung, K.W. 3D-printed nanocomposite scaffolds with tunable magnesium ionic microenvironment induce in situ bone tissue regeneration

          [Abstract] [BibTeX]

          2019 Applied Materials Today
          Vol. 16, pp. 493 - 507
          article DOIURL
          Schipani, R., Nolan, D.R., Lally, C. and Kelly, D.J. Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering

          [Abstract] [BibTeX]

          2019 Connective Tissue Research
          Vol. 0(0), pp. 1-16
          article DOI
          Roopavath, U.K., Soni, R., Mahanta, U., Deshpande, A.S. and Rath, S.N. 3D printable SiO2 nanoparticle ink for patient specific bone regeneration

          [Abstract] [BibTeX]

          2019 RSC Adv.
          Vol. 9, pp. 23832-23842
          article DOI
          Romanazzo, S., Nemec, S. and Roohani, I. iPSC Bioprinting: Where are We at?

          [Abstract] [BibTeX]

          2019 Materials
          Vol. 12(15)
          article DOIURL
          Prendergast, M.E. and Burdick, J.A. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine

          [Abstract] [BibTeX]

          2019 Advanced Materials
          Vol. 0(0), pp. 1902516
          article DOI
          Mestre, R., Pati?o, T., Barceló, X., Anand, S., Pérez-Jiménez, A. and Sánchez, S. Force Modulation and Adaptability of 3D-Bioprinted Biological Actuators Based on Skeletal Muscle Tissue

          [Abstract] [BibTeX]

          2019 Advanced Materials Technologies
          Vol. 4(2), pp. 1800631
          article DOI
          Marchiori, G., Berni, M., Boi, M., Petretta, M., Grigolo, B., Bellucci, D., Cannillo, V., Garavelli, C. and Bianchi, M. Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA

          [Abstract] [BibTeX]

          2019 Medical Engineering & Physics
          Vol. 69, pp. 92 - 99
          article DOIURL
          Li, J., Liu, X., Crook, J. and Wallace, G. 3D graphene-containing structures for tissue engineering

          [Abstract] [BibTeX]

          2019 Materials Today Chemistry
          Vol. 14, pp. 100199
          article DOIURL
          Kleger, N., Cihova, M., Masania, K., Studart, A.R. and L?ffler, J.F. 3d printing of salt as a template for magnesium with structured porosity

          [Abstract] [BibTeX]

          2019 advanced materials
          Vol. 0(0), pp. 1903783
          article DOI
          Kjar, A. and Huang, Y. Application of Micro-Scale 3D Printing in Pharmaceutics

          [Abstract] [BibTeX]

          2019 Pharmaceutics
          Vol. 11(8)
          article DOIURL
          Fenton, O.S., Paolini, M., Andresen, J.L., Müller, F.J. and Langer, R. Outlooks on Three-Dimensional Printing for Ocular Biomaterials Research

          [Abstract] [BibTeX]

          2019 Journal of Ocular Pharmacology and Therapeutics
          Vol. 0(0), pp. null
          article DOI
          Derr, K., Zou, J., Luo, K., Song, M.J., Sittampalam, G.S., Zhou, C., Michael, S., Ferrer, M. and Derr, P. Fully 3D Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function

          [Abstract] [BibTeX]

          2019 Tissue Engineering Part C: Methods
          Vol. 0(ja), pp. null
          article DOI
          Daly, A.C. and Kelly, D.J. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers

          [Abstract] [BibTeX]

          2019 Biomaterials
          Vol. 197, pp. 194 - 206
          article DOIURL
          Creusen, G., Roshanasan, A., Garcia Lopez, J., Peneva, K. and Walther, A. Bottom-up design of model network elastomers and hydrogels from precise star polymers

          [Abstract] [BibTeX]

          2019 Polym. Chem., pp. - article DOI
          Costa, P.F. Translating Biofabrication to the Market

          [Abstract] [BibTeX]

          2019 Trends in Biotechnology article DOIURL
          Cofi?o, C., Perez-Amodio, S., Semino, C.E., Engel, E. and Mateos-Timoneda, M.A. Development of a Self-Assembled Peptide/Methylcellulose-Based Bioink for 3D Bioprinting

          [Abstract] [BibTeX]

          2019 Macromolecular Materials and Engineering
          Vol. 0(0), pp. 1900353
          article DOI
          Cernencu, A.I., Lungu, A., Stancu, I.-C., Serafim, A., Heggset, E., Syverud, K. and Iovu, H. Bioinspired 3D printable pectin-nanocellulose ink formulations

          [Abstract] [BibTeX]

          2019 Carbohydrate Polymers
          Vol. 220, pp. 12 - 21
          article DOIURL
          Caetano, G., Wang, W., Murashima, A., Passarini, J.R., Bagne, L., Leite, M., Hyppolito, M., Al-Deyab, S., El-Newehy, M., Bártolo, P. and Frade, M.A.C. Tissue Constructs with Human Adipose-Derived Mesenchymal Stem Cells to Treat Bone Defects in Rats

          [Abstract] [BibTeX]

          2019 Materials
          Vol. 12(14)
          article DOIURL
          Azim, N., Hart, C., Sommerhage, F., Aubin, M., Hickman, J.J. and Rajaraman, S. Precision Plating of Human Electrogenic Cells on Microelectrodes Enhanced With Precision Electrodeposited Nano-Porous Platinum for Cell-Based Biosensing Applications

          [Abstract] [BibTeX]

          2019 Journal of Microelectromechanical Systems
          Vol. 28(1), pp. 50-62
          article DOIURL
          Angelopoulos, I., Allenby, M.C., Lim, M. and Zamorano, M. Engineering inkjet bioprinting processes toward translational therapies

          [Abstract] [BibTeX]

          2019 Biotechnology and Bioengineering
          Vol. 0(0)
          article DOI
          Almeida, H.A., Costa, A.F., Ramos, C., Torres, C., Minondo, M., Bártolo, P.J., Nunes, A., Kemmoku, D. and da Silva, J.V.L. Additive Manufacturing Systems for Medical Applications: Case Studies

          [Abstract] [BibTeX]

          2019 Additive Manufacturing -- Developments in Training and Education, pp. 187-209 inbook DOIURL
          Khaled, S.A., Alexander, M.R., Irvine, D.J., Wildman, R.D., Wallace, M.J., Sharpe, S., Yoo, J. and Roberts, C.J. Extrusion 3D Printing of Paracetamol Tablets from a Single Formulation with Tunable Release Profiles Through Control of Tablet Geometry

          [Abstract] [BibTeX]

          2018 AAPS PharmSciTech
          Vol. 19(8), pp. 3403-3413
          article DOI
          Zamani, Y., Mohammadi, J., Amoabediny, G., Visscher, D.O., Helder, M.N., Zandieh-Doulabi, B. and Klein-Nulend, J. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(upepsilon-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds

          [Abstract] [BibTeX]

          2018 Biomedical Materials
          Vol. 14(1), pp. 015008
          article DOI
          Li, H., Tan, Y.J. and Li, L. A strategy for strong interface bonding by 3D bioprinting of oppositely charged κ-carrageenan and gelatin hydrogels

          [Abstract] [BibTeX]

          2018 Carbohydrate Polymers
          Vol. 198, pp. 261-269
          article URL
          Petta, D., Armiento, A.R., Grijpma, D., Alini, M., Eglin, D. and D'Este, M. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking

          [Abstract] [BibTeX]

          2018 Biofabrication
          Vol. 10(4), pp. 044104
          article DOI
          García-Lizarribar, A., Fernández-Garibay, X., Velasco-Mallorquí, F., G. Casta?o, A., Samitier, J. and Ramón-Azcón, J. Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue

          [BibTeX]

          2018 Macromolecular Bioscience
          Vol. 18, pp. 1800167
          article DOI
          Gleadall, A., Visscher, D., Yang, J., Thomas, D. and Segal, J. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance

          [Abstract] [BibTeX]

          2018 Burns & Trauma
          Vol. 6(1), pp. 19
          article DOI
          Gullo, M.R., Koeser, J., Ruckli, O., Eigenmann, A. and Hradetzky, D. Rapid Prototyping Method for 3D Printed Biomaterial Constructs with Vascular Structures

          [Abstract] [BibTeX]

          2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5729-5732 inproceedings DOI
          Gill, E.L., Li, X., Birch, M.A. and Huang, Y.Y.S. Multi-length scale bioprinting towards simulating microenvironmental cues

          [Abstract] [BibTeX]

          2018 Bio-Design and Manufacturing
          Vol. 1(2), pp. 77-88
          article DOI
          Choudhury, D., Anand, S. and Win Naing, M. The Arrival of Commercial Bioprinters - Towards 3D Bioprinting Revolution!

          [BibTeX]

          2018 International Journal of Bioprinting
          Vol. 4
          article DOI
          Agarwala, S., Lee, J.M., Ng, W.L., Layani, M., Yeong, W.Y. and Magdassi, S. A novel 3D bioprinted flexible and biocompatible hydrogel bioelectronic platform

          [Abstract] [BibTeX]

          2018 Biosensors and Bioelectronics
          Vol. 102(Supplement C), pp. 365 - 371
          article DOIURL
          Monzón, M., Liu, C., Ajami, S., Oliveira, M., Donate, R., Ribeiro, V. and Reis, R.L. Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds

          [BibTeX]

          2018 Bio-Design and Manufacturing
          Vol. 1(1), pp. 69-75
          article DOI
          Tognato, R., Armiento, A.R., Bonfrate, V., Levato, R., Malda, J., Alini, M., Eglin, D., Giancane, G. and Serra, T. A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Robotics

          [Abstract] [BibTeX]

          2018 Adv. Funct. Mater.
          Vol. 29(9), pp. 1804647
          article DOI
          Schaffner, M., Faber, J.A., Pianegonda, L., Rühs, P.A., Coulter, F. and Studart, A.R. 3D printing of robotic soft actuators with programmable bioinspired architectures

          [Abstract] [BibTeX]

          2018 Nature Communications
          Vol. 9(1), pp. 878
          article DOI
          Raghunath, M., Rimann, M., Kopanska, K. and Laternser, S. TEDD Annual Meeting with 3D Bioprinting Workshop

          [Abstract] [BibTeX]

          2018 CHIMIA
          Vol. 72CHIMIA International Journal for Chemistry, pp. 76-79
          article URL
          Prasopthum, A., Shakesheff, K.M. and Yang, J. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography

          [Abstract] [BibTeX]

          2018 Biofabrication
          Vol. 10(2), pp. 025002
          article DOI
          Allig, S., Mayer, M. and Thielemann, C. Workflow for bioprinting of cell-laden bioink

          [BibTeX]

          2018 Lekar a Technika
          Vol. 48, pp. 46-51
          article URL
          Wang, H., das Neves Domingos, M.A. and Scenini, F. Advanced mechanical and thermal characterization of 3D bioextruded poly(ε-caprolactone)-based composites

          [Abstract] [BibTeX]

          2018 Rapid Prototyping Journal
          Vol. 0(ja), pp. 00-00
          article DOI
          Visscher, D.O., Gleadall, A., Buskermolen, J.K., Burla, F., Segal, J., Koenderink, G.H., Helder, M.N. and van Zuijlen, P.P.M. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction

          [Abstract] [BibTeX]

          2018 Journal of Biomedical Materials Research Part B: Applied Biomaterials
          Vol. 0(0)
          article DOI
          Shi, P., Tan, Y.S.E., Yeong, W.Y., Li, H.Y. and Laude, A. A bilayer photoreceptor‐retinal tissue model with gradient cell density design: A study of microvalve‐based bioprinting

          [Abstract] [BibTeX]

          2018 Journal of Tissue Engineering and Regenerative Medicine
          Vol. 12(5), pp. 1297-1306
          article DOI
          Schmieg, B., Schimek, A. and Franzreb, M. Development and performance of a 3D‐printable Polyethylenglycol‐Diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications

          [Abstract] [BibTeX]

          2018 Engineering in Life Sciences
          Vol. 0(ja)
          article DOIURL
          de Ruijter Mylène, Alexandre, R., Inge, D., Miguel, C. and Jos, M. Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs

          [Abstract] [BibTeX]

          2018 Advanced Healthcare Materials
          Vol. 0(0), pp. 1800418
          article DOIURL
          Romanazzo, S., Vedicherla, S., Moran, C. and Kelly, D.J. Meniscus ECM‐functionalised hydrogels containing infrapatellar fat pad‐derived stem cells for bioprinting of regionally defined meniscal tissue

          [Abstract] [BibTeX]

          2018 Journal of Tissue Engineering and Regenerative Medicine
          Vol. 12(3), pp. e1826-e1835
          article DOI
          Rayate, A. and Jain, P.K. A Review on 4D Printing Material Composites and Their Applications

          [Abstract] [BibTeX]

          2018 Materials Today: Proceedings
          Vol. 5(9, Part 3), pp. 20474 - 20484
          article DOIURL
          Pereira, F.D.A.S., Parfenov, V., Khesuani, Y.D., Ovsianikov, A. and Mironov, V. Commercial 3D Bioprinters

          [Abstract] [BibTeX]

          2018 3D Printing and Biofabrication, pp. 535-549 inbook DOI
          Peiffer, Q.C. Biofabrication: Tools for new therapeutics in regenerative medicine and drug delivery

          [Abstract] [BibTeX]

          2018 School: Queensland University of Technology mastersthesis DOIURL
          Park, H.S., Lee, J.S., Jung, H., Kim, D.Y., Kim, S.W., Sultan, M.T. and Park, C.H. An omentum-cultured 3D-printed artificial trachea: in vivo bioreactor

          [Abstract] [BibTeX]

          2018 Artificial Cells, Nanomedicine, and Biotechnology
          Vol. 46(sup3), pp. S1131-S1140
          article DOI
          Ng, W.L., Qi, J.T.Z., Yeong, W.Y. and Naing, M.W. Proof-of-concept: 3D bioprinting of pigmented human skin constructs

          [Abstract] [BibTeX]

          2018 Biofabrication
          Vol. 10(2), pp. 025005
          article URL
          Ng, W.L., Goh, M.H., Yeong, W.Y. and Naing, M.W. Applying macromolecular crowding to 3D bioprinting: fabrication of 3D hierarchical porous collagen-based hydrogel constructs

          [Abstract] [BibTeX]

          2018 Biomater. Sci.
          Vol. 6, pp. 562-574
          article DOIURL
          Mouser, V.H.M., Levato, R., Mensinga, A., Dhert, W.J.A., Gawlitta, D. and Malda, J. Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs

          [Abstract] [BibTeX]

          2018 Connective Tissue Research
          Vol. 0(0), pp. 1-15
          article DOI
          Liu, F., Hinduja, S. and Bártolo, P. User interface tool for a novel plasma-assisted bio-additive extrusion system

          [Abstract] [BibTeX]

          2018 Rapid Prototyping Journal
          Vol. 24(2), pp. 368-378
          article DOI
          Lim, S.H., Kathuria, H., Tan, J.J.Y. and Kang, L. 3D printed drug delivery and testing systems — a passing fad or the future?

          [Abstract] [BibTeX]

          2018 Advanced Drug Delivery Reviews
          Vol. 132, pp. 139 - 168
          article DOIURL
          Li, H., Tan, Y.J., Liu, S. and Li, L. Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding

          [Abstract] [BibTeX]

          2018 ACS Applied Materials & Interfaces
          Vol. 10(13), pp. 11164-11174
          article DOI
          Li, H., Tan, C. and Li, L. Review of 3D printable hydrogels and constructs

          [Abstract] [BibTeX]

          2018 Materials & Design
          Vol. 159, pp. 20 - 38
          article DOIURL
          Lee, M., Bae, K., Guillon, P., Chang, J., Arlov, ?. and Zenobi-Wong, M. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity

          [Abstract] [BibTeX]

          2018 ACS Applied Materials & Interfaces
          Vol. 10(44), pp. 37820-37828
          article DOI
          Laternser, S., Keller, H., Leupin, O., Rausch, M., Graf-Hausner, U. and Rimann, M. A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues

          [Abstract] [BibTeX]

          2018 SLAS TECHNOLOGY: Translating Life Sciences Innovation
          Vol. 0(0), pp. 2472630318776594
          article DOIURL
          Kuzmenko, V., Karabulut, E., Pernevik, E., Enoksson, P. and Gatenholm, P. Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines

          [Abstract] [BibTeX]

          2018 Carbohydrate Polymers
          Vol. 189, pp. 22 - 30
          article DOIURL
          Kumari, S., Bargel, H., Anby, M.U., Lafargue, D. and Scheibel, T. Recombinant Spider Silk Hydrogels for Sustained Release of Biologicals

          [Abstract] [BibTeX]

          2018 ACS Biomaterials Science & Engineering
          Vol. 4(5), pp. 1750-1759
          article DOI
          Kokkinis, D., Bouville, F. and Studart, A.R. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients

          [Abstract] [BibTeX]

          2018 Advanced Materials
          Vol. 30(19), pp. 1705808
          article DOI
          Khaled, S.A., Alexander, M.R., Wildman, R.D., Wallace, M.J., Sharpe, S., Yoo, J. and Roberts, C.J. 3D extrusion printing of high drug loading immediate release paracetamol tablets

          [Abstract] [BibTeX]

          2018 International Journal of Pharmaceutics
          Vol. 538(1), pp. 223 - 230
          article DOIURL
          Kelder, C., Bakker, A.D., Klein-Nulend, J. and Wismeijer, D. The 3D Printing of Calcium Phosphate with K-Carrageenan under Conditions Permitting the Incorporation of Biological Components—A Method

          [Abstract] [BibTeX]

          2018 Journal of Functional Biomaterials
          Vol. 9(4)
          article DOIURL
          Huang, Y.-A., Ho, C.T., Lin, Y.-H., Lee, C.-J., Ho, S.-M., Li, M.-C. and Hwang, E. Nanoimprinted Anisotropic Topography Preferentially Guides Axons and Enhances Nerve Regeneration

          [Abstract] [BibTeX]

          2018 Macromolecular Bioscience
          Vol. 0(0), pp. 1800335
          article DOI

          Gungor-Ozkerim, P.S., Inci, I., Zhang, Y.S., Khademhosseini, A. and Dokmeci, M.R. Bioinks for 3D bioprinting: an overview

          [Abstract] [BibTeX]

          2018 Biomater. Sci.
          Vol. 6, pp. 915-946
          article DOI
          Gretzinger, S., Beckert, N., Gleadall, A., Lee-Thedieck, C. and Hubbuch, J. 3D bioprinting – Flow cytometry as analytical strategy for 3D cell structures

          [Abstract] [BibTeX]

          2018 Bioprinting
          Vol. 11, pp. e00023
          article DOIURL
          Fortunato, G.M., Maria, C.D., Eglin, D., Serra, T. and Vozzi, G. An ink-jet printed electrical stimulation platform for muscle tissue regeneration

          [Abstract] [BibTeX]

          2018 Bioprinting
          Vol. 11, pp. e00035
          article DOIURL
          Firth, J., Basit, A.W. and Gaisford, S. The Role of Semi-Solid Extrusion Printing in Clinical Practice

          [Abstract] [BibTeX]

          2018 3D Printing of Pharmaceuticals, pp. 133-151 inbook DOI
          Daly, A.C., Pitacco, P., Nulty, J., Cunniffe, G.M. and Kelly, D.J. 3D printed microchannel networks to direct vascularisation during endochondral bone repair

          [Abstract] [BibTeX]

          2018 Biomaterials
          Vol. 162, pp. 34 - 46
          article DOIURL
          Couck, S., Saint-Remi, J.C., der Perre, S.V., Baron, G.V., Minas, C., Ruch, P. and Denayer, J.F. 3D-printed SAPO-34 monoliths for gas separation

          [Abstract] [BibTeX]

          2018 Microporous and Mesoporous Materials
          Vol. 255(Supplement C), pp. 185 - 191
          article DOIURL
          Chinga-Carrasco, G. Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices

          [Abstract] [BibTeX]

          2018 Biomacromolecules
          Vol. 19(3), pp. 701-711
          article DOI
          Caetano, G.F., Wang, W., Chiang, W.-H., Cooper, G., Diver, C., Blaker, J.J., Frade, M.A. and Bártolo, P. 3D-Printed Poly(?-caprolactone)/Graphene Scaffolds Activated with P1-Latex Protein for Bone Regeneration

          [Abstract] [BibTeX]

          2018 3D Printing and Additive Manufacturing
          Vol. 0(0), pp. null
          article DOIURL
          Bastola, A., Paudel, M. and Li, L. Development of hybrid magnetorheological elastomers by 3D printing

          [Abstract] [BibTeX]

          2018 Polymer
          Vol. 149, pp. 213 - 228
          article DOIURL
          Banerjee, H. and Ren, H. Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges

          [Abstract] [BibTeX]

          2018 Electromagnetic Actuation and Sensing in Medical Robotics, pp. 43-72 inbook DOI
          Aied, A., Song, W., Wang, W., Baki, A. and Sigen, A. 3D Bioprinting of stimuli-responsive polymers synthesised from DE-ATRP into soft tissue replicas

          [Abstract] [BibTeX]

          2018 Bioprinting article DOIURL
          Suntornnond, R., Tan, E., An, J. and Chua, C. A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures

          [Abstract] [BibTeX]

          2017 Scientific Reports
          Vol. 7(16902)
          article DOIURL
          Schroeder, T.B.H., Guha, A., Lamoureux, A., VanRenterghem, G., Sept, D., Shtein, M., Yang, J. and Mayer, M. An electric-eel-inspired soft power source from stacked hydrogels

          [Abstract] [BibTeX]

          2017 Nature
          Vol. 552, pp. 214
          article DOI
          Nguyen, D., H?gg, D., Forsman, A., Ekholm, J., Nimkingratana, P., Brantsing, C., Kalogeropoulos, T., Zaunz, S., Concaro, S., Brittberg, M., Lindahl, A., Gatenholm, P., Enejder, A. and Simonsson, S. Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink

          [Abstract] [BibTeX]

          2017 Scientific Reports
          Vol. 7Scientific Reports
          article DOI
          Freeman, F.E. and Kelly, D.J. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues

          [Abstract] [BibTeX]

          2017 Scientific Reports
          Vol. 7(1), pp. 17042
          article DOI
          Levato, R., Webb, W.R., Otto, I.A., Mensinga, A., Zhang, Y., van Rijen, M., van Weeren, R., Khan, I.M. and Malda, J. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells

          [BibTeX]

          2017 Acta Biomaterialia
          Vol. 61(Supplement C), pp. 41-53
          article URL
          Bertlein, S., Brown, G., Lim, K., Jungst, T., Boeck, T., Blunk, T., Tessmar, J., J. Hooper, G., Woodfield, T. and Groll, J. Thiol-Ene Clickable Gelatin: A Platform Bioink for Multiple 3D Biofabrication Technologies

          [Abstract] [BibTeX]

          2017 Advanced Materials article DOI
          Mancini, I., Vindas Bola?os, R., Brommer, H., Castilho, M., Ribeiro, A., van Loon, J., Mensinga, A., Rijen, M., Malda, J. and van Weeren, P. Fixation of hydrogel constructs for cartilage repair in the equine model: a challenging issue

          [Abstract] [BibTeX]

          2017 Tissue Engineering Part C: Methods article DOI
          Cunniffe, G., Gonzalez-Fernandez, T., Daly, A., Nelson Sathy, B., Jeon, O., Alsberg, E. and J. Kelly, D. Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering

          [Abstract] [BibTeX]

          2017 Tissue Engineering Part ATissue Engineering Part A article DOI
          Abbadessa, A., Landín, M., Oude Blenke, E., Hennink, W.E. and Vermonden, T. Two-component thermosensitive hydrogels: Phase separation affecting rheological behavior

          [Abstract] [BibTeX]

          2017 European Polymer Journal
          Vol. 92(Supplement C), pp. 13-26
          article URL
          D'Amora, U., D'Este, M., Eglin, D., Safari, F., Sprecher, C., Gloria, A., De Santis, R., Alini, M. and Ambrosio, L. Collagen Density Gradient on 3D Printed Poly(ε-Caprolactone) Scaffolds for Interface Tissue Engineering

          [BibTeX]

          2017 Journal of tissue engineering and regenerative medicine
          Vol. 12
          article DOI
          Bastola, A.K., Hoang, V.T. and Li, L. A novel hybrid magnetorheological elastomer developed by 3D printing

          [Abstract] [BibTeX]

          2017 Materials & Design
          Vol. 114(Supplement C), pp. 391-397
          article URL
          Zeng, Q., Macri, L., Prasad, A., Clark, R., Zeugolis, D., Hanley, C., Garcia, Y., Pandit, A., Leavesley, D., Stupar, D., Fernandez, M., Fan, C. and Upton, Z. 6.20 Skin Tissue Engineering☆

          [Abstract] [BibTeX]

          2017 Comprehensive Biomaterials II\, pp. 334 - 382 incollection DOIURL
          Thamm, C., DeSimone, E. and Scheibel, T. Characterization of Hydrogels Made of a Novel Spider Silk Protein eMaSp1s and Evaluation for 3D Printing

          [Abstract] [BibTeX]

          2017 Macromolecular Bioscience
          Vol. 17(11), pp. 1700141-n/a
          article DOIURL
          Sultan, S., Siqueira, G., Zimmermann, T. and Mathew, A.P. 3D printing of nano-cellulosic biomaterials for medical applications

          [Abstract] [BibTeX]

          2017 Current Opinion in Biomedical Engineering
          Vol. 2(Supplement C), pp. 29 - 34
          article DOIURL
          Stichler, S., B?ck, T., Paxton, N.C., Bertlein, S., Levato, R., Schill, V., Smolan, W., Malda, J., Tessmar, J., Blunk, T. and Groll, J. Double printing of hyaluronic acid / poly(glycidol) hybrid hydrogels with poly(ε-caprolactone) for MSC chondrogenesis

          [Abstract] [BibTeX]

          2017 Biofabrication article DOI
          Sommer, M.R., Alison, L., Minas, C., Tervoort, E., Ruhs, P.A. and Studart, A.R. 3D printing of concentrated emulsions into multiphase biocompatible soft materials

          [Abstract] [BibTeX]

          2017 Soft Matter
          Vol. 13, pp. 1794-1803
          article DOI
          Siqueira, G., Kokkinis, D., Libanori, R., Hausmann, M.K., Gladman, A.S., Neels, A., Tingaut, P., Zimmermann, T., Lewis, J.A. and Studart, A.R. Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular Architectures

          [Abstract] [BibTeX]

          2017 Advanced Functional Materials
          Vol. 27(12), pp. 1604619-n/a
          article DOI
          Schaffner, M., Rühs, P.A., Coulter, F., Kilcher, S. and Studart, A.R. 3D printing of bacteria into functional complex materials

          [Abstract] [BibTeX]

          2017 Science Advances
          Vol. 3(12)
          article DOIURL
          Ribeiro, A., Blokzijl, M.M., Levato, R., Visser, C.W., Castilho, M., Hennink, W.E., Vermonden, T. and Malda, J. Assessing bioink shape fidelity to aid material development in 3D bioprinting

          [Abstract] [BibTeX]

          2017 Biofabrication article DOI
          Reitmaier, S., Kovtun, A., Schuelke, J., Kanter, B., Lemm, M., Hoess, A., Heinemann, S., Nies, B. and Ignatius, A. Strontium(II) and mechanical loading additively augment bone formation in calcium phosphate scaffolds

          [Abstract] [BibTeX]

          2017 Journal of Orthopaedic Research, pp. n/a-n/a article DOI
          Peng, W., Datta, P., Ayan, B., Ozbolat, V., Sosnoski, D. and Ozbolat, I.T. 3D bioprinting for drug discovery and development in pharmaceutics

          [Abstract] [BibTeX]

          2017 Acta Biomaterialia
          Vol. 57, pp. 26 - 46
          article DOIURL
          Paxton, N.C., Smolan, W., B?ck, T., Melchels, F.P.W., Groll, J. and Juengst, T. Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability

          [Abstract] [BibTeX]

          2017 Biofabrication article DOI
          Mouser, V.H.M., Abbadessa, A., Levato, R., Hennink, W.E., Vermonden, T., Gawlitta, D. and Malda, J. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs

          [Abstract] [BibTeX]

          2017 Biofabrication
          Vol. 9(1), pp. 015026
          article URL
          Lorson, T., Jaksch, S., Lübtow, M.M., Jüngst, T., Groll, J., Lühmann, T. and Luxenhofer, R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink

          [Abstract] [BibTeX]

          2017 Biomacromolecules
          Vol. 18(7), pp. 2161-2171
          article DOI
          Ligon, S.C., Liska, R., Stampfl, J., Gurr, M. and Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing

          [Abstract] [BibTeX]

          2017 Chemical Reviews
          Vol. 117(15), pp. 10212-10290
          article DOI
          Liao, Z., Sinjab, F., Nommeots-Nomm, A., Jones, J., Ruiz-Cantu, L., Yang, J., Rose, F. and Notingher, I. Feasibility of Spatially Offset Raman Spectroscopy for in Vitro and in Vivo Monitoring Mineralization of Bone Tissue Engineering Scaffolds

          [Abstract] [BibTeX]

          2017 Analytical Chemistry
          Vol. 89(1), pp. 847-853
          article DOI
          Kuzmenko, V. Cellulose-derived conductive nanofibrous materials for energy storage and tissue engineering Applications

          [BibTeX]

          2017 School: Department of Microtechnology and Nanoscience CHALMERS UNIVERSITY OF TECHNOLOGY phdthesis URL
          Huang, Y., Zhang, X.-F., Gao, G., Yonezawa, T. and Cui, X. 3D bioprinting and the current applications in tissue engineering

          [Abstract] [BibTeX]

          2017 Biotechnology Journal
          Vol. 12(8), pp. 1600734-n/a
          article DOI
          Henriksson, I., Gatenholm, P. and H?gg, D.A. Increased lipid accumulation and adipogenic gene expression of adipocytes in 3D bioprinted nanocellulose scaffolds

          [Abstract] [BibTeX]

          2017 Biofabrication
          Vol. 9(1), pp. 015022
          article URL
          DeSimone, E., Schacht, K., Pellert, A. and Scheibel, T. Recombinant spider silk-based bioinks

          [Abstract] [BibTeX]

          2017 Biofabrication
          Vol. 9(4), pp. 044104
          article URL
          Dalton, P.D. Melt electrowriting with additive manufacturing principles

          [Abstract] [BibTeX]

          2017 Current Opinion in Biomedical Engineering
          Vol. 2(Supplement C), pp. 49 - 57
          article DOIURL
          Choi, Y., Yi, H., Kim, S. and Cho, D. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics

          [Abstract] [BibTeX]

          2017 Theranostics article URL
          Charbe, N.B., McCarron, P.A., Lane, M.E. and Tambuwala, M.M. Application of three-dimensional printing for colon targeted drug delivery systems

          [Abstract] [BibTeX]

          2017 International Journal of Pharmaceutical Investigation
          Vol. 7(2), pp. 47-59
          article URL
          Borovjagin, A.V., Ogle, B.M., Berry, J.L. and Zhang, J. From Microscale Devices to 3D Printing

          [Abstract] [BibTeX]

          2017 Circulation Research
          Vol. 120(1), pp. 150-165
          article DOIURL
          Baumann, B., Jungst, T., Stichler, S., Feineis, S., Wiltschka, O., Kuhlmann, M., Lindén, M. and Groll, J. Control of Nanoparticle Release Kinetics from 3D Printed Hydrogel Scaffolds

          [Abstract] [BibTeX]

          2017 Angewandte Chemie International Edition, pp. n/a-n/a article DOI
          Aljohani, W., Ullah, M.W., Zhang, X. and Yang, G. Bioprinting and its applications in tissue engineering and regenerative medicine

          [Abstract] [BibTeX]

          2017 International Journal of Biological Macromolecules article DOIURL
          Bastola, A., Hoang Tan, V. and Lin, L. Magnetorheological Elastomer: A novel approach of synthesis

          [Abstract] [BibTeX]

          2016 2ND INTERNATIONAL CONFERENCE IN SPORTS SCIENCE & TECHNOLOGY, At NTU, Singapore conference URL
          Durual, S. Impression 3D et régénération osseuse, un mariage plein d'avenir

          [BibTeX]

          2016 Biomateriaux Cliniques
          Vol. 1BioMatériaux Cliniques, pp. 58-61
          article URL
          Gudapati, H., Dey, M. and Ozbolat, I. A comprehensive review on droplet-based bioprinting: Past, present and future.

          [Abstract] [BibTeX]

          2016 Biomaterials
          Vol. 102, pp. 20-42
          article URL
          Sears, N.A., Seshadri, D.R., Dhavalikar, P.S. and Cosgriff-Hernandez, E. A Review of Three-Dimensional Printing in Tissue Engineering

          [Abstract] [BibTeX]

          2016 Tissue Engineering Part B: Reviews
          Vol. 22(4), pp. 298-310
          article DOI
          Wang, W., Caetano, G., Chiang, W.-H., Sousa, A.L., Blaker, J., Frade, M.A.R.C.O., Frade, C. and Jorge Bártolo, P. Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration

          [Abstract] [BibTeX]

          2016 International Journal of Bioprinting
          Vol. 2, pp. 95-105
          article URL
          Visscher, D.O., Bos, E.J., Peeters, M., Kuzmin, N.V., Groot, M.L., Helder, M.N. and van Zuijlen, P.P.M. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage.

          [Abstract] [BibTeX]

          2016 Tissue engineering Part C, Methods
          Vol. 22, pp. 573-84
          article URL
          Stichler, S., Jungst, T., Schamel, M., Zilkowski, I., Kuhlmann, M., Bock, T., Blunk, T., Tessmar, J. and Groll, J. Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication.

          [Abstract] [BibTeX]

          2016 Annals of biomedical engineering article URL
          Kesti, M., Fisch, P., Pensalfini, M., Mazza, E. and Zenobi-Wong, M. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures

          [Abstract] [BibTeX]

          2016 BioNanoMaterials
          Vol. 17(3-4), pp. 193-204
          article DOI
          Durual, S. Emergence d'une nouvelle génération de substituts osseux synthétiques imprimés en 3D

          [BibTeX]

          2016 BIOMATERIAUX D’AUJOURD’HUI ET DE DEMAINBI
          Vol. Hors-sérieJournal de parodontologie et d'implantologie orale, pp. 63-67
          article URL
          Khati, V., Kellom?ki, M. and Anderson, H.S. Development of a Robust Decellularized Extracellular Matrix Bioink for 3D Bioprinting

          [Abstract] [BibTeX]

          2016 School: Tampere University of Technology mastersthesis
          Wu, C., Wang, B., Zhang, C., Wysk, R.A. and Chen, Y.-W. Bioprinting: an assessment based on manufacturing readiness levels

          [Abstract] [BibTeX]

          2016 Critical Reviews in Biotechnology
          Vol. 0(0), pp. 1-22
          article DOI
          Wang, W.G., Chang, W.H. and Bartolo, P.J. Design, fabrication and evaluation of pcl-graphene scaffolds for bone regeneration

          [Abstract] [BibTeX]

          2016 Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) conference DOI
          Visscher, D.O., Farré-Guasch, E., Helder, M.N., Gibbs, S., Forouzanfar, T., van Zuijlen, P.P. and Wolff, J. Advances in Bioprinting Technologies for Craniofacial Reconstruction

          [Abstract] [BibTeX]

          2016 Trends in Biotechnology
          Vol. 34(9), pp. 700-710
          article DOI
          Suntornnond, R., Tan, E.Y.S., An, J. and Chua, C.K. A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks

          [Abstract] [BibTeX]

          2016 Materials
          Vol. 9(9), pp. 756
          article DOIURL
          Suntornnond, R., An, J. and Chua, C.K. A Preliminary Study on the Extrusion Resolution of Pluronic F127 for Bioprinting Thermo-responsive Hydrogel Constructs

          [Abstract] [BibTeX]

          2016 Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016) conference URL
          Sommer, M.R., Schaffner, M., Carnelli, D. and Studart, A.R. 3D Printing of Hierarchical Silk Fibroin Structures

          [Abstract] [BibTeX]

          2016 ACS Applied Materials & Interfaces
          Vol. 8(50), pp. 34677-34685
          article DOI
          Ruiz-Cantu, L., Gleadall, A., Faris, C., Segal, J., Shakesheff, K. and Yang, J. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing

          [Abstract] [BibTeX]

          2016 Biofabrication
          Vol. 8(1), pp. 015016
          article URL
          Raphael, B., Khalil, T., Workman, V.L., Smith, A., Brown, C.P., Streulli, C., Saiani, A. and Domingos, M. 3D cell bioprinting of self-assembling peptide-based hydrogels

          [Abstract] [BibTeX]

          2016 Materials Letters article DOIURL
          Passamai, V.E., Dernowsek, J.A., Nogueira, J., Lara, V., Vilalba, F., Mironov, V.A., Rezende, R.A. and da Silva, J.V. From 3D Bioprinters to a fully integrated Organ Biofabrication Line

          [Abstract] [BibTeX]

          2016 Journal of Physics: Conference Series
          Vol. 705(1), pp. 012010
          article URL
          Ozbolat, I.T., Peng, W. and Ozbolat, V. Application areas of 3D bioprinting

          [Abstract] [BibTeX]

          2016 Drug Discovery Today
          Vol. 21(8), pp. 1257-1271
          article DOIURL
          Ozbolat, I.T., Moncal, K.K. and Gudapati, H. Evaluation of bioprinter technologies

          [Abstract] [BibTeX]

          2016 Additive Manufacturing article DOIURL
          Ozbolat, I.T. and Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting

          [Abstract] [BibTeX]

          2016 Biomaterials
          Vol. 76, pp. 321-343
          article DOIURL
          Ng, W.L., Yeong, W.Y. and Naing, M.W. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering

          [Abstract] [BibTeX]

          2016 International Journal of Bioprinting
          Vol. 2(1)
          article DOIURL
          Müller, M., ?ztürk, E., Arlov, ?., Gatenholm, P. and Zenobi-Wong, M. Alginate Sulfate--Nanocellulose Bioinks for Cartilage Bioprinting Applications

          [Abstract] [BibTeX]

          2016 Annals of Biomedical Engineering, pp. 1-14 article DOI
          Minas, C., Carnelli, D., Tervoort, E. and Studart, A.R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics

          [Abstract] [BibTeX]

          2016 Advanced Materials
          Vol. 28(45), pp. 9993-9999
          article DOI
          Melchels, F.P.W., Blokzijl, M.M., Levato, R., Peiffer, Q.C., de Ruijter, M., Hennink, W.E., Vermonden, T. and Malda, J. Hydrogel-based reinforcement of 3D bioprinted constructs

          [Abstract] [BibTeX]

          2016 Biofabrication
          Vol. 8(3), pp. 035004
          article URL
          Hou, X., Liu, S., Wang, M., Wiraja, C., Huang, W., Chan, P., Tan, T. and Xu, C. Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles

          [Abstract] [BibTeX]

          2016 Journal of Laboratory Automation article DOIURL
          H?lzl, K., Lin, S., Tytgat, L., Vlierberghe, S.V., Gu, L. and Ovsianikov, A. Bioink properties before, during and after 3D bioprinting

          [Abstract] [BibTeX]

          2016 Biofabrication
          Vol. 8(3), pp. 032002
          article URL
          Heinzelmann, E. Olten Meeting 2015 Antibiotics and Bioprinting for a better life

          [Abstract] [BibTeX]

          2016 CHIMIA International Journal for Chemistry
          Vol. 70(1), pp. 112-115
          article DOIURL
          H?kansson, K.M.O., Henriksson, I.C., de la Pe?a Vázquez, C., Kuzmenko, V., Markstedt, K., Enoksson, P. and Gatenholm, P. Solidification of 3D Printed Nanofibril Hydrogels into Functional 3D Cellulose Structures

          [Abstract] [BibTeX]

          2016 Advanced Materials Technologies
          Vol. 1(7), pp. 1600096-n/a
          article DOI
          Gu, B.K., Choi, D.J., Park, S.J., Kim, M.S., Kang, C.M. and Kim, C.-H. 3-dimensional bioprinting for tissue engineering applications

          [Abstract] [BibTeX]

          2016 Biomaterials Research
          Vol. 20(1), pp. 12
          article DOI
          Gross, B., Lockwood, S.Y. and Spence, D.M. Recent Advances in Analytical Chemistry by 3D Printing

          [BibTeX]

          2016 Analytical Chemistry
          Vol. 0(0)
          article DOI
          Geven, M.A., Sprecher, C., Guillaume, O., Eglin, D. and Grijpma, D.W. Micro-porous composite scaffolds of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite prepared by low-temperature extrusion-based additive manufacturing

          [Abstract] [BibTeX]

          2016 Polymers for Advanced Technologies article DOI
          Daly, A.C., Cunniffe, G.M., Sathy, B.N., Jeon, O., Alsberg, E. and Kelly, D.J. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering

          [Abstract] [BibTeX]

          2016 Advanced Healthcare Materials
          Vol. 5(18), pp. 2353-2362
          article DOI
          Daly, A.C., Critchley, S.E., Rencsok, E.M. and Kelly, D.J. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage

          [Abstract] [BibTeX]

          2016 Biofabrication
          Vol. 8(4), pp. 045002
          article URL
          Carrel, J., Wiskott, A., Scherrer, S. and Durual, S. Large Bone Vertical Augmentation Using a Three‐Dimensional Printed TCP/HA Bone Graft: A Pilot Study in Dog Mandible

          [Abstract] [BibTeX]

          2016 Clinical Implant Dentistry and Related Research
          Vol. 18(6), pp. 1183-1192
          article DOI
          Caetano, G., Violante, R., Sant’Ana, A.B., Murashima, A.B., Domingos, M., Gibson, A., Bártolo, P. and Frade, M.A. Cellularized versus decellularized scaffolds for bone regeneration

          [Abstract] [BibTeX]

          2016 Materials Letters
          Vol. 182, pp. 318-322
          article DOIURL
          ávila, H.M., Schwarz, S., Rotter, N. and Gatenholm, P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration

          [Abstract] [BibTeX]

          2016 Bioprinting
          Vol. 1–2, pp. 22-35
          article DOIURL
          Arslan-Yildiz, A., Assal, R.E., Chen, P., Guven, S., Inci, F. and Demirci, U. Towards artificial tissue models: past, present, and future of 3D bioprinting

          [Abstract] [BibTeX]

          2016 Biofabrication
          Vol. 8(1), pp. 014103
          article URL
          Abbadessa, A., Mouser, V.H.M., Blokzijl, M.M., Gawlitta, D., Dhert, W.J.A., Hennink, W.E., Malda, J. and Vermonden, T. A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides

          [Abstract] [BibTeX]

          2016 Biomacromolecules
          Vol. 17(6), pp. 2137-2147
          article DOI
          Abbadessa, A., Blokzijl, M., Mouser, V., Marica, P., Malda, J., Hennink, W. and Vermonden, T. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

          [Abstract] [BibTeX]

          2016 Carbohydrate Polymers
          Vol. 149, pp. 163-174
          article DOIURL
          Kokkinis, D., Schaffner, M. and Studart, A.R. Multimaterial magnetically assisted 3D printing of composite materials

          [BibTeX]

          2015 Nature Communications
          Vol. 6, pp. 8643
          article DOI
          Rimann, M., Bono, E., Annaheim, H., Bleisch, M. and Graf-Hausner, U. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.

          [Abstract] [BibTeX]

          2015 Journal of laboratory automation
          Vol. 21, pp. 496-509
          article DOI
          Ho, C.M.B., Ng, S.H. and Yoon, Y.-J. A review on 3D printed bioimplants

          [Abstract] [BibTeX]

          2015 International Journal of Precision Engineering and Manufacturing
          Vol. 16(5), pp. 1035-1046
          article DOI
          Moussa, M., Carrel, J.-P., Scherrer, S., Cattani-Lorente, M., Wiskott, A. and Durual, S. Medium-Term Function of a 3D Printed TCP/HA Structure as a New Osteoconductive Scaffold for Vertical Bone Augmentation: A Simulation by BMP-2 Activation

          [Abstract] [BibTeX]

          2015 Materials
          Vol. 8Materials, pp. 2174
          article DOIURL
          Markstedt, K., Mantas, A., Tournier, I., Martínez ávila, H., H?gg, D. and Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications

          [Abstract] [BibTeX]

          2015 Biomacromolecules
          Vol. 16(5), pp. 1489-1496
          article DOI
          Knoll, S. Niere aus dem Drucker? Sag niemals nie

          [Abstract] [BibTeX]

          2015 Medizin&Technik
          Vol. 01(02), pp. 44-47
          article URL
          Rimann, M., Laternser, S., Keller, H., Leupin, O. and Graf-Hausner, U. 3D Bioprinted Muscle and Tendon Tissues for Drug Development

          [BibTeX]

          2015 CHIMIA International Journal for Chemistry
          Vol. 69(1), pp. 65-67
          article DOI
          Horvath, L., Umehara, Y., Jud, C., Blank, F., Petri-Fink, A. and Rothen-Rutishauser, B. Engineering an in vitro air-blood barrier by 3D bioprinting.

          [Abstract] [BibTeX]

          2015 Scientific reports
          Vol. 5, pp. 7974
          article
          Tan, E.Y.S. and Yeong, W.Y. Concentric bioprinting of alginate-based tubular constructs using multi-nozzle extrusion-based technique

          [Abstract] [BibTeX]

          2015 International Journal of Bioprinting
          Vol. 1, pp. 49-56
          article
          Schuddeboom, M. Biofabrication of Perfusable Liver Constructs

          [BibTeX]

          2015 School: Utrecht University - Faculty of Veterinary Medicine mastersthesis URL
          Schacht, K., Jüngst, T., Schweinlin, M., Ewald, A., Groll, J. and Scheibel, T. Biofabrication of Cell-Loaded 3D Spider Silk Constructs

          [Abstract] [BibTeX]

          2015 Angewandte Chemie International Edition
          Vol. 54(9), pp. 2816-2820
          article DOI
          Müller, M., Becher, J., Schnabelrauch, M. and Zenobi-Wong, M. Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting

          [Abstract] [BibTeX]

          2015 Biofabrication
          Vol. 7(3), pp. 035006
          article URL
          Khaled, S.A., Burley, J.C., Alexander, M.R., Yang, J. and Roberts, C.J. 3D printing of tablets containing multiple drugs with defined release profiles

          [Abstract] [BibTeX]

          2015 International Journal of Pharmaceutics
          Vol. 494(2), pp. 643-650
          article DOIURL
          Khaled, S.A., Burley, J.C., Alexander, M.R., Yang, J. and Roberts, C.J. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles

          [Abstract] [BibTeX]

          2015 Journal of Controlled Release
          Vol. 217, pp. 308-314
          article DOIURL
          Kesti, M., Eberhardt, C., Pagliccia, G., Kenkel, D., Grande, D., Boss, A. and Zenobi-Wong, M. Bioprinting Complex Cartilaginous Structures with Clinically Compliant Biomaterials

          [Abstract] [BibTeX]

          2015 Advanced Functional Materials
          Vol. 25(48), pp. 7406-7417
          article DOI
          Hockaday, L. 3D Bioprinting: A Deliberate Business

          [BibTeX]

          2015 Genetic Engineering & Biotechnology News
          Vol. 35(1), pp. 14-17
          article DOI
          Graf-Hausner, U., Rimann, M., Bono, E., Laternser, S. and Bleisch, M. A novel multiwell device for drug development with bioprinted 3D human tendon and skeletal muscle tissues

          [Abstract] [BibTeX]

          2015 poster URL
          Chee Kai Chua, K.F.L. 3D Printing and Additive Manufacturing

          [BibTeX]

          2014 book URL
          Rimann, M. and Graf-Hausner, U. Bioprinting und in vitro-Modelle zur Wirkstoffentwicklung

          [Abstract] [BibTeX]

          2014 poster URL
          Markstedt, K., Tournier, I., Mantas, A., H?gg, D. and Gatenholm, P. 3D BIOPRINTING OF LIVING TISSUE WITH NANOCELLULOSE “INK”- CELLINK

          [Abstract] [BibTeX]

          2014 poster
          Kesti, M., Müller, M., Becher, J., Schnabelrauch, M., D’Este, M., Eglin, D. and Zenobi-Wong, M. A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation

          [Abstract] [BibTeX]

          2014 Acta Biomaterialia
          Vol. 11, pp. 162-172
          article DOIURL
          Carrel, J.-P., Wiskott, A., Moussa, M., Rieder, P., Scherrer, S. and Durual, S. A 3D printed TCP/HA structure as a new osteoconductive scaffold for vertical bone augmentation

          [Abstract] [BibTeX]

          2014 Clinical Oral Implants Research
          Vol. 27(1), pp. 55-62
          article DO
          Rezende, R.A., Selishchev, S.V., Kasyanov, V.A., da Silva, J.V.L. and Mironov, V.A. An Organ Biofabrication Line: Enabling Technology for Organ Printing. Part II: from Encapsulators to Biofabrication Line

          [Abstract] [BibTeX]

          2013 Biomedical Engineering
          Vol. 47(4), pp. 213-218
          article DOI
          Müller, M., Becher, J., Schnabelrauch, M. and Zenobi-Wong, M. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

          [Abstract] [BibTeX]

          2013 Journal of visualized experiments : JoVE, pp. 1-9 article URL
          RegenHU Product information: 3D organomimetic models for tissue engineering

          [BibTeX]

          2013 Biotechnology Journal
          Vol. 8(3), pp. 283-283
          article DOI
          Müller, M., Studer, D., Maniura-Weber, K. and Zenobi-Wong, M. Novel bioprinted co-culture system fro investigating chondrogenesis

          [BibTeX]

          2012 poster
          Graf-Hausner, U., Rimann, M. and Annaheim, H. Skin Bioprinting: an innovative approach to produce standardized skin models on demand

          [Abstract] [BibTeX]

          2012 poster URL
          Bleisch, M., Kuster, M., Thurner, M., Meier, C., Bossen, A. and Graf-Hausner, U. Organomimetic skin model production based on a novel bioprinting technology

          [Abstract] [BibTeX]

          2012 poster URL
        • 更多文獻(xiàn)
        • 世聯(lián)博研 聯(lián)系方式:

          世聯(lián)博研(北京)科技有限公司
          世聯(lián)博研客服中心 聯(lián)系方式:
          Email地址:[email protected]
          郵寄地址:北京市昌平區(qū)回龍觀鎮(zhèn)上奧世紀(jì)中心2A座9層906,郵編:100096

          世聯(lián)博研財(cái)務(wù)及帳號(hào):

          開(kāi)戶銀行:上海浦東發(fā)展銀行北京通州支行,帳號(hào):91390154740000493
          開(kāi)戶銀行:郵政儲(chǔ)蓄銀行北京豐臺(tái)支行,帳號(hào):1004-8156-3080-010-001
          開(kāi)戶銀行:中國(guó)建設(shè)銀行北京海淀中關(guān)村支行,帳號(hào):6227-0000-1085-0278-575
          開(kāi)戶銀行:中國(guó)工商銀行北京海淀支行,帳號(hào):9558-8002-0015-1927270

          世聯(lián)博研貨物代理政策:

          一、關(guān)于世聯(lián)博研(北京)科技有限公司
          世聯(lián)博研(北京)科技有限公司,世聯(lián)博研以自身豐富的生物科研知識(shí)、大量生物科研技術(shù)/商務(wù)綜合型復(fù)合人才(10名生物學(xué)博士,15名生物醫(yī)藥專(zhuān)業(yè)研究生)、多年和中科院/生物醫(yī)藥基地商務(wù)合作經(jīng)驗(yàn)以及良好廣泛的海外關(guān)系(歐美、德國(guó)、以色列有自己的專(zhuān)職海外代表),代理合作國(guó)際生物科研領(lǐng)域近300家廠家品牌產(chǎn)品(ABGENE, ABNOVA, AGRISERA,AMBION, ANCELL,BIOIND, BIOSEARCHTECH, BIOVISION,BIOWORLDE, CALTAGMEDSYSTEMS,CELLSIGNAL, CELL_TRANSFECTION, CLONTECH, DOJINDO,EBIOSCIENCE, EPIGENTEK, EPITOMICS, EXBIO_CZ,FITZGERALD_FII,FRONTIERSCI,GOLDBIO,KENTSCIENTIFIC,KISKER_BIOTECH,LABSAFETY,MBLINTL,MOBIO,NANOAMOR,NEB,NIBSC_AC,NOVUSBIO,PALL,PELFREEZ_BIO,PHYTOTECHLAB,PIERCENET,PIERCE_ANTIBODIES,POLYSCIENCES,QORPAK,QUALITYBIOLOGICAL,SLBY,REAGENTS,RNDSYSTEMS,ROCKLAND_INC,SABIOSCIENCES,SIGMAALDRICH,SPHEROTECH,STREM,SUNNYLAB,TEDIA,THERMOSCIENTIFIC,THERMO,TOCRIS,等國(guó)際生物品牌產(chǎn)品,產(chǎn)品涉及生物試劑、生物耗材、生物科研儀器—世聯(lián)博研(北京)科技有限公司專(zhuān)注國(guó)際生物產(chǎn)品(試劑、醫(yī)藥、科研耗材、科研儀器)原裝進(jìn)口
          二、代理?xiàng)l件:
          1、理機(jī)構(gòu)必須具有企業(yè)經(jīng)營(yíng)實(shí)體,有長(zhǎng)期市場(chǎng)管理和推廣技巧能力的工作人員,能立進(jìn)行財(cái)務(wù)結(jié)算。同時(shí)能在其管理區(qū)域
          的市場(chǎng)進(jìn)行代理產(chǎn)品的推廣、客戶開(kāi)發(fā)、銷(xiāo)售、維護(hù)等工作。
          2、有良好大學(xué)高校、中學(xué)實(shí)驗(yàn)室關(guān)系、良好的醫(yī)院/診所關(guān)系、良好的研究院/所關(guān)系;
          3、有良好生物醫(yī)藥領(lǐng)域知識(shí)人才者更佳;
          4、公司無(wú)不良記錄;
          5、熱愛(ài)、專(zhuān)注生物科研事業(yè);
          三、代理費(fèi)用:
          申請(qǐng)成為世聯(lián)博研(北京)科技有限公司的代理商,簽訂一年的產(chǎn)品代理協(xié)議,不收取任何代理加盟費(fèi),代理有責(zé)任在所屬區(qū)域內(nèi)主動(dòng)宣傳產(chǎn)品功能,每個(gè)月完成5000元(人民幣 )產(chǎn)品的銷(xiāo)售任務(wù),連續(xù)兩個(gè)月沒(méi)有銷(xiāo)售業(yè)績(jī)的停止代理商積分功能,代理資格保留。半年無(wú)銷(xiāo)售業(yè)績(jī)的,自動(dòng)解除代理協(xié)議。
          四、代理權(quán)限:
          1、代理商在所屬市區(qū)域范圍內(nèi)銷(xiāo)售,不得跨省分/城市銷(xiāo)售。
          2、可以代理世聯(lián)博研任何產(chǎn)品;
          3、享受世聯(lián)統(tǒng)一的客戶服務(wù)和售后維護(hù)資源;
          4、贈(zèng)送有業(yè)務(wù)能力良好的生物醫(yī)藥版《企業(yè)業(yè)管管理系統(tǒng)》,功能 包括,采購(gòu)訂貨管理、報(bào)價(jià)管理、合同管理、人事管理、 出入庫(kù)管理、財(cái)務(wù)往來(lái)管理、系統(tǒng)權(quán)限設(shè)置管理等
          5、世聯(lián)博研實(shí)行代理商商務(wù)積分制度,憑積分可直接兌換現(xiàn)金
          詳情垂詢國(guó)免費(fèi)客服電話:,010-67529703,索取代理商政策

        <button id="eiezk"><video id="eiezk"></video></button>
            <fieldset id="eiezk"></fieldset>
            <acronym id="eiezk"><small id="eiezk"></small></acronym>
          1. <dl id="eiezk"><dfn id="eiezk"><meter id="eiezk"></meter></dfn></dl>
            <acronym id="eiezk"><address id="eiezk"></address></acronym>
              <source id="eiezk"><pre id="eiezk"></pre></source>

              中日韩欧美风情视频,91午夜精品亚洲一区二区三区,一级a性色毛片 | 一区二区三区免费,《貂蝉艳史》完整版,精品欧美一区二区在线观看 | 精品国产乱码久久久久久牛牛,国产suv精品一区二区三区,青青草久久爱 | 欧美三级,美国一级,双乳被一左一右吃着的丫鬟文,高清无码日韩A级黄色高潮免费看视频 | 韩国成人网站www永久,草永久欧美第一页,婷婷五月天激情网 | 亚洲内射视频,丝袜老师踩我的喷水,高清无码啪啪视频 | 又大又粗又黄又爽的视频,91视频麻豆,久色悠悠 | 偷拍美女大香蕉,精品久久久久久久久久ntr影视,日批毛片 | 九七人妻,国产农村妇女aaaaa视频,迪丽热巴自慰 | 一区二区三区无码免费,日本公妇乱淫免费,国产高清操逼 |