型號(hào):fx-5000tt
聯(lián)系人:李勝亮
聯(lián)系電話:18618101725
品牌:美國(guó)flexercell
![]() |
特點(diǎn):
1)對(duì)生長(zhǎng)在三維狀態(tài)下的細(xì)胞進(jìn)行靜態(tài)的或者周期性的牽張拉伸刺激培養(yǎng),可以進(jìn)行實(shí)時(shí)觀察分析。
2)對(duì)生長(zhǎng)在三維環(huán)境下的細(xì)胞進(jìn)行單軸向或者雙軸向的靜態(tài)或者周期性的應(yīng)力加載實(shí)驗(yàn)
3)可建立te制的各種模擬實(shí)驗(yàn):心率模擬實(shí)驗(yàn),步行模擬實(shí)驗(yàn),跑動(dòng)模擬實(shí)驗(yàn)和其他動(dòng)力模擬實(shí)驗(yàn)。
4)可構(gòu)建長(zhǎng)度達(dá)35mm的生物人工組織
5)具有豐富的三維培養(yǎng)模具和多種蛋白包被材料的自動(dòng)細(xì)胞組織三維培養(yǎng)系統(tǒng)


6)該系統(tǒng)以立體水凝膠為三維培養(yǎng)支架, 水凝膠支架具有大量體內(nèi)微環(huán)境基質(zhì)的特征,水凝膠所具有的三維網(wǎng)絡(luò)結(jié)構(gòu)、含水量高和力學(xué)性能可控等特性與體內(nèi)細(xì)胞所處基質(zhì)微環(huán)境相似, 被廣泛用于工程化組織的體外構(gòu)建研究,水凝膠的硬度調(diào)控范圍很大, 非常有利于模擬體內(nèi)生理或病理力學(xué)微環(huán)境
是真正意義上的三維培養(yǎng)系統(tǒng)


7)配套的scanflex掃描分析模塊可以記錄三維人工組織中凝膠的壓實(shí)過(guò)程、記錄三維細(xì)胞培養(yǎng)凝膠的壓實(shí)動(dòng)力學(xué)、凝膠面積計(jì)算
An automated scanning device with area measurement software.
適用范圍
1)flexercell的Tissue Train ®培養(yǎng)體系,是為了解決這一組織培養(yǎng)過(guò)程中的難題,這個(gè)培養(yǎng)體系通過(guò)為細(xì)胞和基質(zhì)提供三維支架矩陣組織、動(dòng)態(tài)的拉伸力和多種幾何模型來(lái)創(chuàng)建不同形狀的生物人工組織(如線性,梯形和圓形)。
2水凝膠基質(zhì)力學(xué)環(huán)境模擬
3)生物材料的細(xì)胞力學(xué)微環(huán)境體外構(gòu)建系統(tǒng)
4)基于干細(xì)胞3D力學(xué)環(huán)境的工程化微組織構(gòu)建研究
A 3D collagen cell-seeded construct (or bioartifical tissue) is dispensed with a pipette into a linear mold created with the
Trough Loader® and Tissue Train® System. After the construct has polymerized, the flexercell® Tension System can be used with an Arctangle® Loading Station? to apply uniaxial strain to the construct.
Tissue Train® Bioartificial Tissue Fabrication with Uniaxial Strain
Tension Test of a Bioartificial Tissue
A 3D cell-seeded collagen gel created with the Tissue Train® System is subjected to a tensile test until failure. Shown here is the construct within the test grips during testing
Tissue Train® Trapezoidal Construct under Tension with Corresponding Finite Element Strain Values
Trapezoidal-shaped 3D cell-seeded gel construct (created with the flexercell® Tissue Train®System) undergoing unconstrained tension applied with the FX-5000? Tension System. The strain values, as determined with Finite Element Analysis, are depicted alongside the strained construct.
Tissue Train ®培養(yǎng)系統(tǒng)應(yīng)用背景
體外培養(yǎng)在與真實(shí)組織在結(jié)構(gòu)上和功能上相似的人工組織需要以下幾個(gè)基本條件:
(1)細(xì)胞
(2)支架矩陣組織
(3)培養(yǎng)基和生長(zhǎng)因子和(4)機(jī)械刺激。這些條件彼此相互影響,并且相互之間共同來(lái)促進(jìn)形成能夠承受生物機(jī)械力的,且結(jié)構(gòu)比較穩(wěn)定的組織。而在人工組成形成的過(guò)程中,這些細(xì)胞按照發(fā)育途徑形成具有一定幾何形狀的細(xì)胞外基質(zhì)結(jié)構(gòu)。其中一些信號(hào)轉(zhuǎn)導(dǎo)途徑參與了細(xì)胞外基質(zhì)組合物的形成。這些途徑中,有些是由細(xì)胞基質(zhì)的機(jī)械變形調(diào)節(jié),并通過(guò)膜結(jié)合蛋白,如整合素,粘著斑復(fù)合體,細(xì)胞粘附分子和離子通道傳遞到細(xì)胞內(nèi)。這些途徑中細(xì)胞還可以響應(yīng)配體,如細(xì)胞基質(zhì)形變所釋放的細(xì)胞因子,激素或生長(zhǎng)因子等。
為了維持肌肉骨骼組織的完整性和強(qiáng)度,組織內(nèi)細(xì)胞需要保持一定水平的的內(nèi)在應(yīng)力。如果缺乏這種內(nèi)在的應(yīng)力,組織會(huì)缺少?gòu)?qiáng)度導(dǎo)致細(xì)胞結(jié)構(gòu)的破壞或者組織的斷裂。目前一般認(rèn)為如果在固定四肢,臥床休息或在內(nèi)在應(yīng)力水平的降低的情況下,將導(dǎo)致骨中礦物質(zhì)流失,骨組織萎縮,骨骼弱化,以及合成代謝活性的降低和分解代謝活性的增加。
為了在體外培養(yǎng)與原生組織類似的人工組織,重要的就是能夠創(chuàng)建模擬體內(nèi)條件的環(huán)境。細(xì)胞在具有機(jī)械運(yùn)動(dòng)作用的的環(huán)境中培養(yǎng),可以促進(jìn)細(xì)胞的新陳代謝,并可以改變細(xì)胞的形狀和其它性能。因此,在體外形成過(guò)程中建立和保持一個(gè)具備機(jī)械作用的環(huán)境(即張力,剪切力或壓縮)就成為這一過(guò)程中至關(guān)重要的。除了具備機(jī)械作用的環(huán)境,在三維環(huán)境下培養(yǎng)細(xì)胞可以比靜態(tài)二維培養(yǎng)法更好地模擬原生環(huán)境。


1. Abraham T, Kayra D, McManus B, Scott A. Quantitative
assessment of forward and backward second harmonic three dimensional images of
collagen type I matrix remodeling in a stimulated cellular environment. J
Struct Biol 180(1):17-25, 2012.
2. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online
monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J
Tissue Eng Regen Med 2(8):521-524, 2008.
3. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous
overexpression of hyaluronan synthases within dynamically cultured collagen
gels: implications for vascular and valvular disease. Biomaterials 29:2969-2976,
2008.
4. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper
L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix
rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein.
J Biol Chem 288(1):141-51, 2013.
5. Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A,
Mayer M, Quijano-Roy S, Desguerre I, Lainé J, Ben Yaou R, Bonne G, Coirault C. Cellular
microenvironments reveal defective mechanosensing responses and elevated YAP
signaling in LMNA-mutated muscle precursors. J Cell Sci 127(Pt
13):2873-84, 2014.
6. Cao TV, Hicks
MR, Campbell D, Standley PR. Dosed myofascial release in three-dimensional
bioengineered tendons: effects on human fibroblast hyperplasia, hypertrophy,
and cytokine secretion. J Manipulative Physiol Ther 36(8):513-21, 2013.
7. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR. Duration
and magnitude of myofascial release in 3-dimensional bioengineered tendons:
effects on wound healing. J Am Osteopath Assoc 115(2):72-82, 2015.
8. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM,
Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem
cells in three-dimensional collagen culture: osteogenesis inhibits bone
morphogenic protein and Wnt signaling pathways, and cyclic tensile strain
causes upregulation of proinflammatory cytokine regulators and angiogenic
factors. Tissue Eng Part A 17(21-22):2615-2627, 2011.
9. Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard
J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. A
three-dimensional gel bioreactor for assessment of cardiomyocyte induction in
letal muscle-derived stem cells. Tissue Eng Part C Methods 16(3):375-385,
2010.
10. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita
K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation
by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue
Engineering Part A 15(6):1373-1380, 2009.
11. Clause KC, Tinney JP, Liu JL, Keller BB, Huard
J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and
contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis,
IN, 2007.
12. Clause KC, Tinney JP, Liu JL, Gharaibeh B,
Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning
engineered cardiac tissue from letal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA
Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
13. de Jonge N, Foolen J, Brugmans MC, S?ntjens SH,
Baaijens FP, Bouten CV. Degree of scaffold degradation influences collagen
(re)orientation in engineered tissues. Tissue Eng Part A 20(11-12):1747-57,
2014.
14. de Lange WJ, Grimes AC, Hegge LF, Ralphe JC. Ablation
of cardiac myosin-binding protein-C accelerates contractile kinetics in
engineered cardiac tissue. J Gen Physiol 141(1):73-84, 2013.
15. Ferdous Z, Lazaro LD, Iozzo RV, H??k M,
Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D
cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008.
16. Freeman SA, Christian S, Austin P, Iu I, Graves
ML, Huang L, Tang S, Coombs D, Gold MR, Rolley CD. Applied stretch
initiates directional invasion through the action of Rap1 GTPase as a tension
sensor. J Cell Sci 130(1):152-163, 2017.
17. Garvin J, Qi J, Maloney M, Banes AJ. Novel
system for engineering bioartificial tendons and application of mechanical
load. Tissue Eng 9(5):967-979, 2003.
18. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine
ACL fibroblast integrin expression and cell alignment in response to cyclic
tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490,
2006.
19. Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q,
Xu F, Lu TJ. Engineering three-dimensional cell mechanical microenvironment
with hydrogels. Biofabrication 4(4):042001, 2012.
20. Jobling AI, Gentle A, Metlapally R, McGowan BJ,
McBrien NA. Regulation of scleral cell contraction by transforming growth
factor-? and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079,
2009.
21. Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical
strain modulates metalloprotease and matrix gene expression in human tenocytes
via activation of TGFβ. Biochim Biophys Acta 1833(12):2596-2607, 2013.
22. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park
KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect
the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270,
2005.
23. Masumoto H, Nakane T, Tinney JP, Yuan F, Ye F,
Kowalski WJ, Minakata K, Sakata R, Yamashita JK, Keller BB. The myocardial
regenerative potential of three-dimensional engineered cardiac tissues composed
of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep 6:29933,
2016.
24. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F,
El-Baz A, Sethu P, Keller BB, Giridharan GA. Effects of physiologic
mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic
cardiac cell culture model. Anal Chem 87(4):2107-13, 2015.
25. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp
DA. Mechanical stimulation induces morphological and phenotypic changes in
bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J
Biomed Mater Res A 81(3):523-530, 2007.
26. Nourse MB, Halpin DE, Scatena M, Mortisen DJ,
Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF
induces differentiation of functional endothelium from human embryonic stem
cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30(1):80-89,
2010.
27. Peters AS, Brunner G, Krieg T, Eckes B. Cyclic mechanical strain induces
TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch
Dermatol Res 307(2):191-7, 2015.
28. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions
in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431,
2011.
29. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP
reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
30. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes
AJ. Interleukin-1? increases elasticity of human bioartificial tendons. Tissue
Eng 12(10):2913-2925, 2006.
31. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D,
Guilak F, Banes AJ. IL-1??decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
32. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M,
Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular
ATP is MAPK and NF-?B pathways dependent. Exp Cell Res 315(11):1990-2000,
2009.
33. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D
culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression
levels. J Mech Behav Biomed Mater 11:82-91, 2012.
34. Raval KK, Tao R, White BE, De Lange WJ, Koonce
CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe
disease results in a Golgi-based glycosylation deficit in human induced
pluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121-36,
2015.
35. Ruan JL, Tulloch NL, Saiget M, Paige SL,
Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical
stress promotes maturation of human myocardium from pluripotent stem
cell-derived progenitors. Stem Cells 33(7):2148-57, 2015.
36. Schmidt JB, Chen K, Tranquillo RT. Effects
of intermittent and incremental cyclic stretch on ERK signaling and collagen
production in engineered tissue. Cellular and Molecular Bioengineering 1-10,
2015.
37. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic
differentiation of human mesenchymal stem cells in collagen matrices: effect of
uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA
expression. Tissue Eng 12(12):3459-3465, 2006.
38. Taylor SE, Vaughan-Thomas A, Clements DN,
Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of
tendon fibroblasts in normal and diseased tissue compared to monolayer and
three dimensional culture systems. BMC Musculolet Disord 10:27, 2009.
39. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined
biophysical and soluble factor modulation induces cardiomyocyte differentiation
from human muscle derived stem cells. Sci Rep 4:6614, 2014.
40. Tchao J, Kim JJ, Lin B, Salama G, Lo CW, Yang
L, Tobita K. Engineered human muscle tissue from letal muscle derived
stem cells and induced pluripotent stem cell derived cardiac cells. Int J
Tissue Eng. 2013:198762, 2013.
41. Tobita K, Liu LJ, Janczewski AM, Tinney JP,
Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early
embryonic cardiac tissue retains proliferative and contractile properties of
developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37,
2006.
42. Tondon A, Haase C, Kaunas R. Mechanical
stretch assays in cell culture systems. In: Handbook of Imaging in
Biological Mechanics, ed. Neu CP, Genin GM. CRC Press: Boca Raton, 2015.
43. Triantafillopoulos IK, Banes AJ, Bowman KF Jr,
Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase
remodeling and strength in human supraspinatus bioartificial tendons. Am J
Sports Med 32(4):934-943, 2004.
44. Tulloch NL, Muskheli V, Razumova MV, Korte FS,
Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered
human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59,
2011.
45. Weinbaum JS, Schmidt JB, Tranquillo RT.
Combating adaptation to cyclic stretching by prolonging activation of
extracellular signal-regulated kinase. Cellular and Molecular Bioengineering 6(3):279-286, 2013.
46. Wen W, Chau E, Jackson-Boeters L, Elliott C,
Daley TD, Hamilton DW. TGF-?1 and FAK regulate periostin expression in PDL
fibroblasts. J Dent Res 89(12):1439-1443, 2010.
47. Yang G, Rothrauff BB, Lin H, Gottardi R,
Alexander PG, Tuan RS. Enhancement of tenogenic differentiation of human
adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34(37):9295-306,
2013.
48. Yang Y, Wimpenny I, Wang RK. Application of
polarization-sensitive OCT and Doppler OCT in tissue engineering. In: Optical
Techniques in Regnerative Medicine, edited by Morgan SP, Rose F, Matcher
SJ. Taylor & Francis Group: Florida, p. 307-327, 2014.
49. Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression
profiles in engineered cardiac tissues respond to mechanical loading and
inhibition of tyrosine kinases. Physiol Rep 1(5):e00078, 2013.