型號(hào):
聯(lián)系人:李勝亮
聯(lián)系電話:18618101725
品牌:匈牙利cellsorter

該系統(tǒng)是一種安裝在正常倒置顯微鏡上的計(jì)算機(jī)控制的微量吸管系統(tǒng),量化細(xì)胞形變、細(xì)胞間粘附作用和細(xì)胞與基質(zhì)之間的粘附作用,可同步實(shí)現(xiàn)熒光觀測(cè)、單細(xì)胞捕獲、分選和分離和圖像視頻處理
一個(gè)可在已有顯微鏡上搭建的,可同步實(shí)驗(yàn)吸吮加載、圖像視頻處理與熒光觀測(cè)的細(xì)胞力學(xué)裝置。可建立微管吸吮力學(xué)加載-熒光觀測(cè)耦合的分子-細(xì)胞動(dòng)力學(xué)實(shí)時(shí)原位觀測(cè)系統(tǒng)。
單個(gè)細(xì)胞粘附力測(cè)定模式圖:
細(xì)胞與細(xì)胞之間粘附力測(cè)定模式圖:
通過(guò)施加負(fù)壓將細(xì)胞的一部分(或整體)吸入微管中,測(cè)量一定負(fù)壓吸吮作用下細(xì)胞的變形及其時(shí)間歷程或細(xì)胞粘附分離的臨界負(fù)壓來(lái)評(píng)價(jià)細(xì)胞的變形特性,同時(shí)記錄細(xì)胞的吸入量。
圖像處理技術(shù)和力學(xué)模型,量化測(cè)量細(xì)胞形變、細(xì)胞對(duì)之間的相互作用以及黏附特性、基質(zhì)附著細(xì)胞測(cè)定細(xì)胞硬度等力學(xué)特性。
壓電微管吸吮模塊:對(duì)樣品池內(nèi)細(xì)胞的捕獲、分選、吸吮和微操控;
集成倒置熒光相差顯微鏡:用于對(duì)所述細(xì)胞進(jìn)行熒光激發(fā);
信號(hào)采集模塊:用于對(duì)微弱熒光信號(hào)的采集;
控制模塊:用于對(duì)微管吸吮和熒光采集同步觸發(fā),并進(jìn)行數(shù)據(jù)分析處理
1)High throughput single cell sorting directly from the Petri dish
One single cell arrives to each PCR tube
10 PCR strips containing 80 tubes can be filled in a cycle
Glass cover slip for testing single cell deposition in situ
Drop volume less than 1 ul for adherent cells
Pick up volume of ~1 nl for suspended cells
15-20 seconds per cell. When collecting multiple cells, sorting speed is 1 cell/second.
Number of cells picked up in a single run: 1-1000.
Isolates a subpopulation of live adherent cells expressing fluorescent or luminescent markers
Both unlabeled and fluorescentcells are recognized by computer vision
Viable cells after sorting
Any adherent and non-adherent cell type can be sorted
Cell culture needs minimal preparation before sorting
Average sorting process takes only a few minutes
Multichannel detection using the fluorescent filter setup of the microscope


R. Salánki et al. : Single cell adhesion assay using computer controlled micropipette, PLoS ONE 9(10): e111450 (2014) Open access paper.
P. K. Jani et al.: Complement MASP-1 enhances adhesion between endothelial cells and neutrophils by up-regulating E-selectin expression, Molecular Immunology 75, 38–47 (2016)
N. Sándor et al.: CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18, PLoS ONE 11(9), e0163120 (2016) Open access paper.
Z. K?rnyei et al.: Cell sorting in a Petri dish controlled by computer vision Nature Scientific Reports 3, Article number: 1088 (2013) Open access paper.
R. Salánki et al.: Automated single cell sorting and deposition in submicroliter drops, Appl. Phys. Lett. 105, 083703 (2014)
R. Salánki et al.: High-throughput image based single cell isolation, Microscopy and Analysis, January issue, S10-13 (2015) Open access paper.
R. Ungai-Salánki et al.: Automated single cell isolation from suspension with computer vision, Scientific Reports 6, Article number: 20375 (2016) Open access paper.
Marnie Winter et al.: Isolation of Circulating Fetal Trophoblasts Using Inertial Microfluidics for Noninvasive Prenatal Testing, Advanced Materials Technologies 1800066 (2018)
Mia Palmkvist: Malaria and polypeptides of plasmodium falciparum at the infected erythrocyte surface, PhD Thesis, Karolinska Institutet, Stockholm (2016)
A. Kozlov et al.: A screening of UNF targets identifies Rnb, a novel regulator of Drosophila circadian rhythms, The Journal of Neuroscience 7, 3286-16 (2017)
M. Ngara et al.: Exploring parasite heterogeneity using single-cell RNA-seq reveals a gene signature among sexual stage Plasmodium falciparum parasites, Experimental Cell Research (2018)
K. Piatkevich et al. : A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters, Nature Chem Biol, doi:10.1038/s41589-018-0004-9 (2018)